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Abstract: Harvesting has a strong impact on the dynamic evolution of a population subjected to it. In this
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1. Introduction

F ractional differential equations are more suitable for modeling many real-life phenomena than ordinary
differential equations. Fractional calculus has seen significant development over the past few decades.

Chaos is a very interesting nonlinear phenomenon which has been intensively studied due to its useful
applications in science and technology [1–3]. Studying chaos in fractional-order dynamical systems is an
interesting topic as well. The discrete fractional equations recently attracted researchers in the modeling of
the biological populations and interaction of the species [4–7]. Harvesting has a strong impact on the dynamic
evolution of a population subjected to it. The effects of predator harvesting were reported in [8,9], harvesting
among two fish species and its effects were studied in [10].

In this paper, the predator-prey model is considered with harvesting effort affecting both species directly.
We studied the following fractional-order predator-prey model.{ dαx(t)

dtα = ax(t)(1− x(t))− bx(t)y(t)− cx(t),
dαy(t)

dtα = −dy(t) + ex(t)y(t)− f y(t).
(1)

By using discretization of fractional order using piecewise constant arguments methods [11,12] to (1)
fractional model we have the following discrete modelx(t + 1) = x(t) + kα

Γ(α+1) [ax(t)(1− x(t))− bx(t)y(t)− cx(t)] ,

y(t + 1) = y(t) + kα

Γ(α+1) [−dy(t) + ex(t)y(t)− f y(t)] .
(2)

where 0 < α ≤ 1 is the fractional-order and k is the step size of discretization, x(t) is the population of prey
at time t, y(t) is the population of predator at time t, a is the rate of growth of prey, b is the interaction rate, c
is the constant harvesting effort of prey, d is the mortality rate of predator, e is the conversion rate of prey, f is
the constant harvesting effort of predator. All parameters are assumed to be positive.

The paper is organized as follows. In Section 2, we investigate the topological classification of the unique
positive equilibrium point of the system (2). In Section 3, we discuss period-doubling bifurcation and in Section
4, we discuss Neimark-Sacker bifurcation at positive steady-state. In Section 5, some numerical examples are
presented to verify our theoretical results. In Section 6, some concluding remarks are presented.

Open J. Discret. Appl. Math. 2020, 3(3), 24-32; doi:10.30538/psrp-odam2020.0040 https://pisrt.org/psr-press/journals/odam

https://pisrt.org/psr-press/journals/odam/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/odam


Open J. Discret. Appl. Math. 2020, 3(3), 24-32 25

2. Local stability of positive equilibrium point

The system (2) has three equilibrium points.

E0 (0, 0) , E1

(
a− c

a
, 0
)

, E2

(
d + f

e
,

ae− ad− a f − ce
be

)
.

Note that if ae− ad− a f − ce > 0, then E2 is the unique positive equilibrium point of (2). E0 is the mutual
extinction, E1 is the predator extinction and E3 is coexistence equilibrium point of system (2). For bilogically
meaningful we concentrated on coexistence equilibrium point E2. The jacobian matrix of (2) evaluated at E2 is
given by

J(E2) =

[
1− aM(d+ f )

e
−bM(d+ f )

e
− (ce+a(d−e+ f ))M

b 1

]
,

where M = kα

Γ(α+1) . The corresponding characteristic polynomial is

F(λ) = λ2 −
(

2− aM(d + f )
e

)
λ + 1 + a(d + f )M2 − cM2(d + f )− aM(d + f )(1 + M(d + f ))

e
. (3)

By simple computations we have

F(0) = 1 + M2(d + f )(a− c)− aM(d + f )(1 + M(d + f ))
e

,

F(1) =
M2(d + f )(ae− ad− a f − ce)

e
,

F(−1) = 4 + M2(d + f )(a− c)− aM(d + f )(2 + M(d + f ))
e

.

Since ae− ad− a f − ce > 0, therefore F(1) > 0. For stability analysis we use the following result.

Lemma 1. [13]: Let F(λ) = λ2 − Aλ + B, where A, B are constants. Suppose F(1) > 0 and λ1, λ2 are roots of
F(λ) = 0, then

(i) |λ1| < 1 and |λ2| < 1 iff F(−1) > 0 and F(0) < 1.
(ii) |λ1| < 1 and |λ2| > 1 iff F(−1) < 0.
(iii) |λ1| > 1 and |λ2| > 1 iff F(−1) > 0 and F(0) > 1.
(iv) λ1 = −1 and |λ2| 6= 1 iff F(−1) = 0 and F(0) 6= ±1.
(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1 iff A2 − 4B < 0 and F(0) = 1.

Theorem 1. If (a, b, c, d, e, f , M) ∈ R7
+, ae− ad− a f − ce > 0 and λ1, λ2 are the roots of F(λ) = 0 given by (3), then

(i) |λ1| < 1 and |λ2| < 1 iff

a− a(1 + dM + f M)

eM
< c < a +

4
(d + f )M2 −

a(2 + dM + f M)

eM
,

(ii) |λ1| < 1 and |λ2| > 1 iff

c > a +
4

(d + f )M2 −
a(2 + dM + f M)

eM
,

(iii) |λ1| > 1 and |λ2| > 1 iff

c < min{a− a(1 + dM + f M)

eM
, a +

4
(d + f )M2 −

a(2 + dM + f M)

eM
},

(iv) λ1 = −1 and |λ2| 6= 1 iff

c = a + 4
(d+ f )M2 −

a(2+dM+ f M)
eM , c 6= a− a(1+dM+ f M)

eM , c 6= a + 2
(d+ f )M2 −

a(1+dM+ f M)
eM ,

(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1 iff
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c = a− a(1 + dM + f M)

eM
,

a(d + f )M
e

< 4.

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. If (a, b, c, d, e, f , M) ∈ R7
+, ae− ad− a f − ce > 0, then the unique positive equilibrium point E2 of (2)

is:
(i) a sink and therefore locally asymptotically stable if

a− a(1 + dM + f M)

eM
< c < a +

4
(d + f )M2 −

a(2 + dM + f M)

eM
,

(ii) saddle point and therefore unstable if

c > a +
4

(d + f )M2 −
a(2 + dM + f M)

eM
,

(iii) source or repeller and therefore unstable if

c < min
{

a− a(1 + dM + f M)

eM
, a +

4
(d + f )M2 −

a(2 + dM + f M)

eM

}
,

and
(iv) non-hyperbolic if

c = a + 4
(d+ f )M2 −

a(2+dM+ f M)
eM , c 6= a− a(1+dM+ f M)

eM , c 6= a + 2
(d+ f )M2 −

a(1+dM+ f M)
eM ,

or

c = a− a(1 + dM + f M)

eM
,

a(d + f )M
e

< 4.

3. Period doubling bifurcation

In this section, we investigate that system (2) undergoes period doubling bifurcation [14,15] at the positive
equilibrium point E2. Consider

Λ =
{
(a, b, c, d, e, f , M) ∈ R7

+

∣∣∣ae− ad− a f − ce > 0, c = a +
4

(d + f )M2 −
a(2 + dM + f M)

eM
,

c 6= a− a(1 + dM + f M)

eM
, c 6= a +

2
(d + f )M2 −

a(1 + dM + f M)

eM

}
.

We discuss the period doubling bifurcation of the system (2) at E2 when parameters vary in a small
neighborhood of Λ. Taking c as bifurcation parameter, we consider a perturbation of the system (2) as follows:{

x(t + 1) = x(t) + M [ax(t)(1− x(t))− bx(t)y(t)− (c + δ)x(t)] ,

y(t + 1) = y(t) + M [−dy(t) + ex(t)y(t)− f y(t)] ,
(4)

where M = kα

Γ(α+1) and |δ| � 1 is small perturbation parameter.

We define a transformation by ξ(t) = x(t) − d+ f
e and η(t) = y(t) − a(e−d− f )−(c+δ)e

be to transfer the
equilibrium point E2 to (0, 0). Under this transformation system (4) will become[

ξ(t + 1)
η(t + 1)

]
=

[
a11 a12

a21 1

] [
ξ(t)
η(t)

]
+

[
a1ξ2(t) + a2ξ(t)η(t)
b1ξ(t)δ + b2ξ(t)η(t)

]
, (5)

where a11 = 1− a(d+ f )M
e , a12 = − bM(d+ f )

e , a21 = 2(aM(d+ f )−2e)
bM(d+ f ) , a1 = −aM, a2 = −bM, b1 = − eM

b , b2 = eM.

Eigenvalues of linearized part of (5) are −1 and λ = 3 − aM(d+ f )
e . We construct an invertible matrix T as
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T =

[
bM(d+ f )

2e−aM(d+ f ) − bM(d+ f )
2e

1 1

]
. Now we apply the transformation

[
ξ(t)
η(t)

]
= T

[
u(t)
v(t)

]
, to the system (5) and

we get [
u(t + 1)
v(t + 1)

]
=

[
−1 0
0 λ

] [
u(t)
v(t)

]
+

[
F(u(t), v(t), δ)

G(u(t), v(t), δ)

]
, (6)

where

F(u(t), v(t), δ) = a1u2(t) + a2v2(t) + a3u(t)v(t) + a4u(t)δ + a5v(t)δ,

G(u(t), v(t), δ) = b1u2(t) + b2v2(t) + b3u(t)v(t) + b4u(t)δ + b5v(t)δ,

with

a1 =
beM(−aM2(d + f )2 + 2e(−2 + dM + f M))

(2e− a(d + f )M)(4e− a(d + f )M)
,

a2 =
bM(−2e + a(d + f )M)(a(d + f )M + e(−2 + dM + f M))

2e(4e− a(d + f )M)
,

a3 =
ab(d + f )M2(2 + dM + f M)

8e− 2a(d + f )M
,

a4 =
e(d + f )M2

aM(d + f )− 4e
,

a5 = − (d + f )M2(−2e + a(d + f )M)

8e− 2a(d + f )M
,

b1 =
2be2M(2 + dM + f M)

(2e− a(d + f )M)(4e− a(d + f )M)
,

b2 = − bM(−4ae(d + f )M + a2(d + f )2M2 + 2e2(2 + dM + f M))

2e(4e− a(d + f )M)
,

b3 =
ab(d + f )M2(a(d + f )M + e(−2 + dM + f M))

(2e− a(d + f )M)(4e− a(d + f )M)
,

b4 = − 2e2M2(d + f )
(2e− a(d + f )M)(4e− a(d + f )M)

,

b5 =
e(d + f )M2

4e− a(d + f )M
.

Next we determine the center manifold Wc(0, 0) of the system (6) at the equilibrium point (0, 0) in a small
neighbourhood of δ = 0. By using center manifold theory [16–18], we know that there exist a center manifold
Wc(0, 0), which can be approximately represented as follows:

Wc(0, 0) =
{
(u(t), v(t)) ∈ R2|v(t) = W(u(t), δ) = m1u2(t) + m2δu(t) + m3δ2 + O((|u(t)|+ |δ|)3)

}
.

By using first equation of system (6), we have

v(t + 1) = W(u(t + 1), δ) = −m2δu(t) + m1u2(t) + m3δ2 + O((|u(t)|+ |δ|)3). (7)

By using second equation of system (6), we have

v(t + 1) = λv(t) + G(u(t), v(t), δ) = (b4 + λm2)δu(t) + (b1 + λm1)u2(t) + λm3δ2 + O((|u(t)|+ |δ|)3). (8)

Comparing the coefficients for (7) and (8), we have

m1 =
b1

1− λ
, m2 = − b4

1 + λ
, m3 = 0.
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Then the center manifold can be approximated as follows

v(t) =
b1

1− λ
u2(t)− b4

1 + λ
δu(t) + O((|u(t)|+ |δ|)3). (9)

Substituting (9) in the first equation of the system (6), we have

u(t + 1) = −u(t) + a1u2(t) + a4u(t)δ +
a3b1

1− λ
u3(t) + (

a5b1

1− λ
− a3b4

1 + λ
)u2(t)δ

− a5b4

1 + λ
u(t)δ2 + O((|u(t)|+ |δ|)3) = F̃(u(t), δ).

For period doubling bifurcation we need the following two quantities

L =

(
∂2 F̃

∂u(t)∂δ
+

1
2

∂F̃
∂δ

∂2 F̃
∂u2(t)

)
u(t)=0,δ=0

,

and

M =

(
1
6

∂3 F̃
∂u3(t)

+

(
1
2

∂2 F̃
∂u2(t)

)2)
u(t)=0,δ=0

.

By simple computations, we have

L = a4, M = a2
1 +

a3b1

1− λ
.

By using above calculations we have the following result for period doubling bifurcation of the system
(2).

Theorem 2. If (a, b, c, d, e, f , M) ∈ Λ and L 6= 0, M 6= 0 then the system (2) goes under period doubling bifurcation at
the equilibrium point E2. Moreover, if M > 0 (or M < 0) then period-2 orbits that bifurcate from the equilibrium point
E2 are stable (or unstable).

4. Neimark-Sacker bifurcation

In this section, we investigate that system (2) undergoes Neimark-Sacker bifurcation [19,20] at the positive
equilibrium point E2. Consider

Ω =

{
(a, b, c, d, e, f , M) ∈ R7

+ | ae− ad− a f − ce > 0, c = a− a(1 + dM + f M)

eM
,

a(d + f )M
e

< 4
}

,

where M = kα

Γ(α+1) .
We discuss the Neimark-Sacker bifurcation of the system (2) at E2 when parameters vary in a small

neighbourhood of Ω. Taking c as bifurcation parameter, we consider a perturbation of the system (2) as follows:{
x(t + 1) = x(t) + M [ax(t)(1− x(t))− bx(t)y(t)− (c + δ)x(t)] ,

y(t + 1) = y(t) + M [−dy(t) + ex(t)y(t)− f y(t)] ,
(10)

where M = kα

Γ(α+1) and |δ| � 1 is small perturbation parameter.

We define a transformation by ξ(t) = x(t) − d+ f
e and η(t) = y(t) − a(e−d− f )−(c+δ)e

be to transfer the
equilibrium point E2 to (0, 0). Under this transformation system (10) will become[

ξ(t + 1)
η(t + 1)

]
=

[
a11 a12

a21 1

] [
ξ(t)
η(t)

]
+

[
−bMξ(t)η(t)− aMξ2(t)

eMξ(t)η(t)

]
, (11)

where a11 = 1− aM(d+ f )
e , a12 = − bM(d+ f )

e , a21 = a−eMδ
b .
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The characteristic equation of the linearized part of the system (11) at equilibrium point (0, 0) is

λ2 − p(δ)λ + q(δ) = 0, (12)

where p(δ) = 2− aM(d+ f )
e , and q(δ) = 1− dM2δ− f M2δ.

The roots of (12) are complex with |λ1,2| = 1 which are given by λ1,2 =
p(δ)±i

√
4q(δ)−p2(δ)
2 . By

computations, we obtain |λ1| = |λ2| =
√

q(δ), and
(

d|λ1|
dδ

)
δ=0

=
(

d|λ2|
dδ

)
δ=0

= − (d+ f )M2

2 < 0.

By simple computations, we can check that p(0) = 2− a(d+ f )M
e . Since a(d+ f )M

e < 4, therefore we have

−2 < p(0) < 2. If we set p(0) = 0, then we obtain a(d+ f )M
e = 2 and if we set p(0) = 1, then we obtain

a(d+ f )M
e = 1. Since λm

1 , λm
2 6= 1 for m = 1, 2, 3, 4 at δ = 0 is equivalent to p(0) 6= ±2, 0, 1, therefore λm

1 , λm
2 6= 1

for m = 1, 2, 3, 4 at δ = 0 if (a, b, c, d, e, f , M) ∈ Ω and following conditions are satisfied:

a(d + f )M
e

6= 1, 2. (13)

Now we use the following transformation to convert the linear part of (11) into its canonical form at δ = 0.[
ξ(t)
η(t)

]
=

− b(d+ f )M
e 0

aM(d+ f )
2e − 1

2

√
4− (−2 + aM(d+ f )

e )2

 [u(t)
v(t)

]
. (14)

Under the transformation (14), the system (11) will become[
u(t + 1)
v(t + 1)

]
=

[
α −β

β α

] [
u(t)
v(t)

]
+

[
f (u(t), v(t))
g(u(t), v(t))

]
, (15)

where

α = 1− aM(d + f )
2e

,

β =
1
2

√
4− (−2 +

aM(d + f )
e

)2,

f (u, v) =
abM2(d + f )

2e
u2 +

bM
2

√
4− (−2 +

aM(d + f )
e

)2uv,

g(u, v) =
abM3(a + 2e)(d + f )2

2e
√

aM(d + f )(4e− aM(d + f ))
u2 +

b(a− 2e)(d + f )M2

2e
uv.

We define the following real number L, which analyses the direction in which the closed invariant curve
occurs in a system undergoing Neimark-Sacker bifurcation method:

L =

([
−Re

(
(1− 2λ1)λ

2
2

1− λ1
η20η11

)
− 1

2
|η11|2 − |η02|2 + Re(λ2η21)

])
δ=0

,

where

η20 =
1
8
[ fuu − fvv + 2guv + i(guu − gvv − 2 fuv)] ,

η11 =
1
4
[ fuu + fvv + i(guu + gvv)] ,

η02 =
1
8
[ fuu − fvv − 2guv + i(guu − gvv + 2 fuv)] ,

η21 =
1
16

[ fuuu + fuvv + fuuv + gvvv + i(guuu + guvv − fuuv − fvvv)] .
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From calculations the computed partial derivatives are

fuu =
abM2(d + f )

e
,

fuv =
bM
2

√
4− (−2 +

aM(d + f )
e

)2,

fvv = fuuu = fvvv = fuvv = fuuv = 0,

gvv = guuu = gvvv = guvv = guuv = 0,

guu =
abM3(a + 2e)(d + f )2

e
√

aM(d + f )(4e− aM(d + f ))
,

guv =
bM2(d + f )(a− 2e)

2e
.

Due to above calculations, we have the following result for existence and direction of Neimark-Sacker
bifurcation.

Theorem 3. Assume that (a, b, c, d, e, f , M) ∈ Ω and conditions (13) are satisfied. If L 6= 0, then the system (2) goes
under Neimark-Sacker bifurcation at the unique positive equilibrium point E2 when the parameter c varies in a small
neighbourhood of c = a− a(1+dM+ f M)

eM . Furthermore, if L < 0, then an attracting invariant closed curve bifurcates from

the equilibrium point for c > a− a(1+dM+ f M)
eM , and if L > 0, then a repelling invariant closed curve bifurcates from the

equilibrium point for c < a− a(1+dM+ f M)
eM .

5. Numerical examples

In this section some interesting numerical examples are provided to validate our theoretical discussions
on various qualitative aspects of the model.

Example 1. We select the parameters values as a = 200, b = 0.8, d = 2.3, e = 40, f = 0.5, k = 0.15, α = 0.95
and initial conditions x(0) = 0.1, y(0) = 8. For these values the unique positive equilibrium point of (2) is
(0.07, 11.2316). The eigenvalues of J(E2) for these values are λ1 = −1, λ2 = 0.643641, which confirms that the
system (2) undergoes period doubling bifurcation at (0.07, 11.2316) as bifurcation parameter passes through
c = 177.015. We plot bifurcation diagrams for both prey and predator populations for c ∈ [176, 180]. (see
Figure 1)

Figure 1. Bifurcation diagrams for prey and predator populations with a = 200, b = 0.8, d = 2.3, e = 40, f =

0.5, k = 0.15, α = 0.95, x(0) = 0.1, y(0) = 8, c ∈ [176, 180].

Example 2. We select the parameters values as a = 200, b = 0.8, d = 2.3, e = 40, f = 0.5, k = 0.15, α = 0.95
and initial conditions x(0) = 0.1, y(0) = 35. For these values the unique positive equilibrium point of (2) is
(0.07, 37.1336). The eigenvalues of J(E2) for these values are λ1 = −0.17818 + 0.983998i, λ2 = −0.17818−
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0.983998i with |λ1,2| = 1, which confirms that the system (2) undergoes Neimark-Sacker bifurcation at
(0.07, 37.1336) as bifurcation parameter passes through c = 156.293. We plot bifurcation diagrams for both
prey and predator populations for c ∈ [156, 156.7]. (see Figure 2 )

Figure 2. Bifurcation diagrams for prey and predator populations with a = 200, b = 0.8, d = 2.3, e = 40, f =

0.5, k = 0.15, α = 0.95, x(0) = 0.1, y(0) = 35, c ∈ [156, 156.7].

Example 3. We select the parameters values as a = 20, b = 10, d = 2, e = 40, f = 1, k = 0.11, α = 0.9 and the
initial conditions x(0) = 0.073, y(0) = 0.35. The positive equilibrium point for these values is (0.075, 0.35058).
For these values the equilibrium point is locally asymptotically stable iff 14.9942 < c < 77.0381. We plot
phase portraits for c = 14, 14.9942, 15, 15.2. Clearly one can see that for c = 14, the equilibrium point
(0.35058, 0.142621) is unstable, whereas for c = 15 and c = 15.2 it is stable. For c = 14.9942, the system
undergoes bifurcation. (See figure (3))
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Figure 3. Phase portraits for prey and predator populations with a = 20, b = 10, d = 2, e = 40, f = 1, k =

0.11, α = 0.9, x(0) = 0.05, y(0) = 0.3 for c = 14, 14.9942, 15, 15.2

6. Conclusion

We studied a fractional-order predator-prey model with harvesting in both species. We study the
existence and local stability of coexistence equilibrium point E2 of system (2) and their dependence in the
form of constant harvesting effort of prey. Moreover, the system (2) goes under period-doubling bifurcation
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and Neimark-Sacker bifurcation under certain conditions on constant harvesting effort of prey. Numerical
examples are presented to support our theoretical results.
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