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Abstract

We present a rigorous homogenization approach to modelling piping flow erosion in a spatially
heterogeneous soil. The aim is to provide a justification to a formal homogenization approach to
piping flow erosion with deposition in a spatially heterogeneous soil. Under the assumption that
the soil domain is perforated periodically with cylindrical repeating microstructure, we begin by
proving that a solution to the proposed set of microscopic equations exist. Two-scale convergence
is then used to study the asymptotic behaviour of solutions to the microscopic problem as the
microscopic length scale approaches zero(0). We thus derive rigorously a homogenized model or
macro problem as well as explicit formula for the effective coefficients. A strong observation from
the numerical simulation was that, soil particle concentration in the water/soil mixture decreases
but at a decreasing rate whereas soil particle deposition increases at regions with increasing
amount of particle concentration in the flow causing a reduction in bare pore spaces across the
soil domain.
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1 Introduction

Several studies on porous media over the decades have been conducted and a lot of papers have
been published, addressing the basics of flow and transport through porous media. In most cases
averaging and the notion of representative elementary volume is used [1]. A number of studies [2, 3]
on conceptual models and the theory of mixtures have also been proposed.

Normally, the heterogeneous medium is described as a medium with local parameters that can be
described by functions rapidly varying with respect to space variables and time. Homogenization
is an approach that allows us to study the macro behaviour of a medium by its micro properties, it
therefore seeks to replace a heterogeneous material by an equivalent homogeneous one.

One of the early studies was conducted by [4] and [5]. They respectively studied effective conductivity
of a media with small concentrations of randomly and periodically arranged inclusions. Effective
viscosity of suspensions in compressible viscous fluids was also investigated by [6]. A general
approach based on asymptotic tools which can deal with a variety of different physical problems
was also introduced later by [7].

The homogenization procedure is in two forms, namely the formal homogenization and rigorous
homogenization. The former is based on construction of asymptotic expansions using multiple
scales. At least two natural spatial length scales are introduced. One measuring variations within
one period cell (the fast scale) and the other measuring variations within the domain of interest (the
slow scale). The effectiveness of the use of multiple space scales to treat systematically boundary
value problems with rapidly varying periodic structure was established by [8].

The latter is also based on energy estimates. Since the coefficients of the equations involved are
rapidly oscillating and the derivatives are multiplied by the characteristic length scale ϵ which
is the ratio of the microscopic length scale to the macroscopic length scale, obtaining estimates
independent of ϵ is very difficult. To achieve this however, one must pass to the limit in weak sense
by using integration by parts and suitable test functions [9, 10]. This process acts as a rigorous
justification of results normally obtained using the formal homogenization [11, 12].

In this paper we model the piping flow erosion phenomena in a spatially heterogeneous soil and
justify mathematically by rigorous use of periodic homogenization thus showing that the results
obtained from formal homogenization can be verified through this rigorous homogenization process
via two scale convergence.

In what follows we give a few mathematical theorems and lemma [12] useful in the quest to rigorously
obtain a homogenized model for the piping flow erosion via two-scale convergence.

1.1 Important theories on homogenization

Lemma 1.1. For a smooth Y-periodic function G(y),∫
Y

∂G(y)

∂yi
dy = 0, i = 1, 2, 3, ..., d

Given a differential operator A0 = − ∂

∂yi

(
aij(y)

∂

∂yj

)
and an equation of the form

A0u = B, u is Y − periodic, Lemma 1.2 hold (1.1)
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Lemma 1.2. For the existence of a solution to (1.1), a necessary condition is∫
Y

B(y)dy = 0

Lemma 1.2 is a solvability condition for (1.1). This plays an important role in homogenization and
implications of which is analyzed in Proposition 1.1

Proposition 1.1. The homogeneous equation

A0u = 0 (1.2)

have solutions that are constants in y.

Consequently it can be deduced from Proposition 1.1 that all solutions to (1.1) differ by a constant
in y. let ΛT = Λ× (0, T ) for T ∈ (0,∞) and C∞

# (Y ) a space of infinitely differentiable functions in
R2 which are Y − periodic.

Definition 1.1. Denote by (uϵ) a sequence of functions in L2(ΛT ), we say that (uϵ) converges two
scale to a unique function u0(t, x, y) ∈ L2(ΛT × Y ) if and only if for any Ψ ∈ L2(ΛT , C

∞
# (Y )) we

have

lim
ϵ→0

T∫
0

∫
Λ

uϵ(t, x)Ψ(t, x,
x

ϵ
)dxdt =

1

|Y |

T∫
0

∫
Λ

∫
Y

u0(t, x, y)Ψ(t, x, y)dydxdt

Theorem 1.3. For a bounded sequence uϵ ∈ L2(ΛT ), there exist a subsequence and a function
u0 ∈ L2(ΛT × Y ) such that uϵ two scale converges to u0. However, uϵ converges weakly in L2(ΛT )
to the average of the two scale limit over the unit cell :

uϵ →
∫
Y

u0(., ., y)dy, weakly in L2(ΛT )

2 Rigorous Homogenization of the Microscopic Problem
via Two-scale Convergence

2.1 Choice of the micro structure and the microscopic problem

A bounded heterogeneous soil structure Λ inR2 of coordinates x = (x1, x2) with periodic positioning
of pores through which a water/soil particles mixture of volume Λf flowing through a soil matrix
Λs with a purely geometrical fluid/soil interface ∂Λs of no thickness. The spatial variable x is
a macroscale (global) variable. We take in the space R2 a unit cell Y with a microscale (local)

variable y = (y1, y2) and define a characteristic length scale ϵ =
l

L
with yi =

xi
ϵ

for i ∈ {1, 2}, l and
L denotes the characteristic length of the unit cell Y and the soil domain Λ. The reference unit
cell Y has two pairwise disjoint connected domains Y s and Y f with smooth fluid/soil boundary
∂Y s. A repeating arrangement of copies ϵY occupying the entire region Λ as shown in Fig. 1 was
created.
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Fig. 1. (a) Left: Reference unit cell Y . (b) Right: Micro-scale geometry of the soil
domain Λϵ

2.2 Function spaces and unknowns of the microscopic problem P ϵ

We define a parameterized domain Λϵ and discuss briefly the function spaces and few technical
assumptions on the unknown objects in the microscopic model.

2.2.1 Function spaces

For ϵ =
l

L
> 0 as in Fig. 1, we define F = (0, T ) for T ∈ (0,∞). Also for any (t, x) ∈ F × R2, let

Dϵ(t,
x

ϵ
) = D(t, y), µϵ(t,

x

ϵ
) = µ(t, y), Eϵ

u(t,
x

ϵ
) = Eu(t, y). The notations used in this section are

listed as follows:

⟨af, bg⟩L2(Λϵ) = ab
∫
Λϵ f(x)g(x)dx - inner product in L2(Λϵ) for a, b ∈ R,

||g||L2(Λϵ) =
√∫

Λϵ |g(x)|2dx- L2(Λϵ) norm of g,

W = {u ∈ H1
#(Y ) |

∫
Y
udy = 0}

C∞
# (Y ) - space of infinitely differentiable functions in R2 which are Y − periodic,

L2
#(Y ) - L2 − norm on Y-periodic functions,

H1
#(Y ) - H1 on functions that are Y − periodic,

L∞(Λ) - {g|g : Λ → R, g measurable such that there exists a k ∈ R with |g| ≤ k, almost everywhere
on Λ},
||v||p

Lp(Λ;L2(Y ))
=
∫
Λ
||v||p

L2(Y )
dx, for p ∈ [1,∞).

W d,p a Sobolev Space endowed with d− order derivative and an Lp − norm.

2.2.2 Unknowns and parameters of the microscopic model

The unknowns in the microscopic model are:

Concentration of soil particles in water/soil mixture Cϵ
s : F × Λϵ

f → R
Concentration of deposited soil particles Sϵ

d : F × Λϵ
f → R

Flow velocity uϵ : F × Λϵ
f → R

Flow pressure pϵ : F × Λϵ
f → R

Fraction of non-clogging conduit f ϵ
nc : F × Λϵ

f → R
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The parameters in the model are:

Diffusion CoefficientDϵ : F × Λϵ
f → R

Molecular viscosity µϵ : F × Λϵ
f → R

Euler NumberEϵ
u : F × Λϵ

f → R
Attachment efficiency for non-clogging conduit βnc ∈ (0,∞)

Attachment efficiency for clogging conduit βcl ∈ (0,∞)

Average overall mass transfer coefficient Ψ ∈ (0,∞)

As a working assumption we assume the following:

Dϵ, µϵ, Eϵ
u ∈ L∞(F × Λ)

Dϵ and µϵare positive definate.

We thus have the dimensionless coupled equations at the microscopic level for the piping flow erosion
as

∇.uϵ = 0 in Λϵ (2.1)

[ρ(uϵ∂Λs − uϵ).n] = 0 on ∂Λϵ
s (2.2)

∂

∂t
(Cϵ

s + Sϵ
d) +∇.(uϵCϵ

s) = ∇.(D(t, y)∇Cϵ
s) in Λϵ

f (2.3)

[Cϵ
s(u

ϵ∂Λs − uϵ) +D(t, y)∇Cϵ
s].n = 0 on ∂Λϵ

s (2.4)

∂

∂t
(uϵ) + (uϵ.∇)uϵ = −Eu(t, y)∇pϵ +∇.(2µ(t, y)∇uϵ) in Λϵ

f (2.5)

[uϵ(uϵ∂Λs − uϵ)− Eu(t, y)p
ϵ + 2µ(t, y)∇uϵ].n = 0 on ∂Λϵ

s (2.6)

∂Sϵ
d

∂t
= (βncf

ϵ
nc + βcl(1− f ϵ

nc))ΨCϵ
s in Λϵ

f (2.7)

∂f ϵ
nc

∂t
+ βncΨf ϵ

ncC
ϵ
s = 0 in Λϵ

s (2.8)

2.3 The weak formulation of the microscopic problem

On the weak formulation of the microscopic problem we postulate definition 2.1

Definition 2.1. The functions

Cϵ
s ∈ H1(F ;L2(Λϵ

f ))

uϵ ∈ H1(F ;L2(Λϵ
f ))

pϵ ∈ W 1,∞(F )

Sϵ
d ∈ W 1,∞(F )

f ϵ
nc ∈ W 1,∞(F )

are called weak solutions to (2.1)- (2.8) if for every t ∈ F the following holds

⟨ ∂
∂t

(Cϵ
s + Sϵ

d), ω⟩L2(Λϵ
f
) + ⟨D∇Cϵ

s ,∇ω⟩L2(Λϵ
f
) = ⟨uϵCϵ

s,∇ω⟩L2(Λϵ
f
) (2.9)
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⟨ ∂
∂t

uϵ,Π⟩L2(Λϵ
f
) + ⟨2µ∇uϵ,∇Π⟩L2(Λϵ

f
) = ⟨uϵuϵ,∇Π⟩L2(Λϵ

f
)

+⟨Eup
ϵ,∇Π⟩L2(Λϵ

f
) (2.10)

for test functions ω,Π ∈ H1(F × Λϵ) such that ω|∂Λϵ
s
= 0 and Π|∂Λϵ

s
= 0.

with
∂Sϵ

d

∂t
= (βncf

ϵ
nc + βcl(1− f ϵ

nc))ΨCϵ
s

∂f ϵ
nc

∂t
+ βncΨf ϵ

ncC
ϵ
s = 0

2.4 The ϵ−independent prior estimate (Energy Estimates)

In this section and the next, the well-posedness of the microscopic problem is discussed. We prove
the existence of solution to (2.9) and (2.10) thus postulate Lemma 2.1.

Lemma 2.1. There exist constants k1 and k2 which are independent of ϵ such that

||uϵ||L2(F ;H1(Λϵ
f
)) + ||∇tu

ϵ||L2(F ;L2(Λϵ
f
)) ≤ k1, (2.11)

||Cϵ
s||L2(F ;H1(Λϵ

f
)) + ||∇tC

ϵ
s||L2(F ;L2(Λϵ

f
)) ≤ k2. (2.12)

Proof. of (2.11)

From (2.10) we choose the test function Π = uϵ

⟨ ∂
∂t

uϵ, uϵ⟩+ ⟨2µ∇uϵ,∇uϵ⟩ = ⟨uϵuϵ,∇uϵ⟩+ ⟨Eup
ϵ,∇uϵ⟩

let 2µ = g0 > 0, Eu = e0 > 0 for g0, e0 ∈ R and applying Cauchy - Schwarz [13] we get

1

2

∂

∂t
||uϵ||2 + g0||∇uϵ||2 ≤ ||uϵuϵ||||∇uϵ||+ e0||pϵ||||∇uϵ||

Using Young’s inequality (variant) [14] we obtain:

1

2

∂

∂t
||uϵ||2 + g0||∇uϵ||2 ≤ δ1||∇uϵ||2 + c(δ1)||uϵ||4 + δ2||∇uϵ||2 + c(δ2)e0||pϵ||2

for δ1, δ2 > 0, c(δ1) =
1

4δ1
and c(δ2) =

1

4δ2
grouping similar terms gives

1

2

∂

∂t
||uϵ||2 + (g0 − δ1 − δ2)||∇uϵ||2 ≤ c(δ1)||uϵ||4 + c(δ2)e0||pϵ||2

by Friedrich’s inequality [15], ||uϵ||2 can be bounded by its weak derivative thus for δ1 + δ2 ∈ (0, g0)
we can write

||∇uϵ||2 ≤ 1

(g0 − δ1 − δ2)

(
c(δ1)||uϵ||4 + c(δ2)e0||pϵ||2L∞ − 1

2

∂

∂t
||uϵ||2

)
hence by integrating we have∫ t

0

||∇uϵ||2dt∗ ≤ 1

(g0 − δ1 − δ2)

((∫ t

0

(c(δ1)||uϵ||4 + c(δ2)e0||pϵ||2L∞)dt∗
)
− 1

2
∥|uϵ||2

)
= k1

< ∞ since ||uϵ||, ||pϵ|| are bounded.
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Proof. of (2.12)

From (2.9) choose ω = Cϵ
s

⟨ ∂
∂t

(Cϵ
s + Sϵ

d), C
ϵ
s⟩+ ⟨D∇Cϵ

s ,∇Cϵ
s⟩ = ⟨uϵC

ϵ
s,∇Cϵ

s⟩

⟨ ∂
∂t

Cϵ
s, C

ϵ
s⟩+ ⟨ ∂

∂t
Sϵ
d, C

ϵ
s⟩+ ⟨D∇Cϵ

s,∇Cϵ
s⟩ = ⟨uϵC

ϵ
s,∇Cϵ

s⟩

⟨ ∂
∂t

Cϵ
s, C

ϵ
s⟩+ ⟨D∇Cϵ

s ,∇Cϵ
s⟩ = ⟨uϵC

ϵ
s,∇Cϵ

s⟩ − ⟨ ∂
∂t

Sϵ
d, C

ϵ
s⟩

For D = d0 > 0 and applying Cauchy-Schwarz we get

1

2

∂

∂t
||Cϵ

s||2 + d0||∇Cϵ
s||2 ≤ ||uϵCϵ

s||||∇Cϵ
s||+ || ∂

∂t
Sϵ
d||||Cϵ

s ||

Next we apply the Arithmetic mean-geometric mean inequality [13] and Variant Young’s inequality
and obtain:

1

2

∂

∂t
||Cϵ

s||2 + d0||∇Cϵ
s||2 ≤ δ||∇Cϵ

s ||2 +Q(δ)||uϵ||2||Cϵ
s||2 +

1

2
||∂S

ϵ
d

∂t
||2 + 1

2
||Cϵ

s ||2

for δ > 0 and Q(δ) =
1

4δ
.

this inequality can also be grouped as

1

2

∂

∂t
||Cϵ

s ||2 + (d0 − δ)||∇Cϵ
s||2 ≤ 1

2
|| ∂
∂t

Sϵ
d||2

+

(
1

2
+Q(δ)||uϵ||2

)
||Cϵ

s ||2 (2.13)

by Gronwall’s inequality [16] for δ ∈ (0, d0), d0 > 0, we can write

||Cϵ
s||2 ≤ e

∫ t
0 (1+2Q(δ)||uϵ||2)dt∗

(
||Cϵ

s(0, x)||2 +
∫ t

0

|| ∂
∂t

Sϵ
d||2L∞dt∗

)
= e(t+2Q(δ)

∫ t
0 ||uϵ||2dt∗)

(
||Cϵ

s(0, x)||2 +
∫ t

0

|| ∂
∂t

Sϵ
d||2L∞dt∗

)
≤ e(T+2Q(δ)

∫ T
0 ||uϵ||2dt∗)

(
||Cϵ

s(0, x)||2 +
∫ T

0

|| ∂
∂t

Sϵ
d||2L∞dt∗

)
Hence Cϵ

s is bounded,
from (2.13) we have

||∇Cϵ
s||2 ≤ 1

2(d0 − δ)

(
(1 +Q(δ)||uϵ||2)||Cϵ

s ||2 + || ∂
∂t

Sϵ
d||2L∞ − ∂

∂t
||Cϵ

s||2
)

Integrate on (0, t)∫ t

0

||∇Cϵ
s||2dt∗ ≤ 1

2(d0 − δ)

(∫ t

0

(1 +Q(δ)||uϵ||2)||Cϵ
s ||2dt∗

+

∫ t

0

|| ∂
∂t

Sϵ
d||2L∞dt∗ − ||Cϵ

s||2
)

= k2 < ∞
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2.5 Compactness results (Two-scale)

From the boundedness results obtained and theorem 1.3, we have the following results: there exist
u0, Cs0 ∈ L2(F × Λ× Y ), p0, Sd0 ∈ L∞(F × Λ× Y ), Cs1, u1 ∈ L2(F × Λ;W ) such that

(i) uϵ ⇀2 u0 , Cϵ
s ⇀2 Cs0, p

ϵ ⇀2 p0 and Sϵ
d ⇀2 Sd0

(ii) ∇uϵ ⇀2 ∇xu0 +∇yu1 and ∇Cϵ
s ⇀2 ∇xCs0 +∇yCs1

(iii) uϵ ⇀ û0(t, x, y) weakly, p
ϵ ⇀ p̂0(t, x, y) weakly, C

ϵ
s ⇀ Ĉs0(t, x, y) weakly and

(iv) uϵ ⇀ ũ0(t, x) strongly, p
ϵ ⇀ p̃0(t, x) strongly, C

ϵ
s ⇀ C̃s0(t, x) strongly

consequently uniqueness implies

(v) ũ0(t, x) = û0(t, x, y) = u0(t, x)

(vi) C̃s0(t, x) = Ĉs0(t, x, y) = Cs0(t, x)

(vii) p̃0(t, x) = p̂0(t, x, y) = p0(t, x)

2.6 Passing the microscopic problem to ϵ → 0 via two scale convergence

From (2.10) we have∫
F

∫
Λ

∇tu
ϵΠdxdt+

∫
F

∫
Λ

2µ(t,
x

ϵ
)∇uϵ∇Πdxdt =

∫
F

∫
Λ

uϵuϵ∇Πdxdt+

∫
F

∫
Λ

Eu(t,
x

ϵ
)pϵ∇Πdxdt

for all Π ∈ H1(F × Λ). We choose the test function Π(t, x) = Π0(t, x) + ϵΠ1(t, x,
x

ϵ
) where

Π0,Π1 ∈ C∞
0 (F × Λ)× C∞

0 (F × Λ;C∞
# (Y )) and obtain:∫

F

∫
Λ

∇tu
ϵ(Π0 + ϵΠ1)dxdt+

∫
F

∫
Λ

2µ(t,
x

ϵ
)∇uϵ∇(Π0 + ϵΠ1)dxdt =∫

F

∫
Λ

uϵuϵ∇(Π0 + ϵΠ1)dxdt+

∫
F

∫
Λ

Eu(t,
x

ϵ
)pϵ∇(Π0 + ϵΠ1)dxdt

this expands to∫
F

∫
Λ

∇tu
ϵ(Π0 + ϵΠ1)dxdt+

∫
F

∫
Λ

2µ(t,
x

ϵ
)∇uϵ(∇xΠ0 + ϵ∇xΠ1 +∇yΠ1)dxdt =∫

F

∫
Λ

uϵuϵ(∇xΠ0 + ϵ∇xΠ1 +∇yΠ1)dxdt+

∫
F

∫
Λ

Eu(t,
x

ϵ
)pϵ(∇xΠ0 + ϵ∇xΠ1 +∇yΠ1)dxdt

grouping we have∫
F

∫
Λ

∇tu
ϵΠ0dxdt+

∫
F

∫
Λ

2µ(x,
x

ϵ
)∇uϵ(∇xΠ0 +∇yΠ1)dxdt+ ϵ

∫
F

∫
Λ

∇uϵΠ1dxdt+

ϵ

∫
F

∫
Λ

2µ(t,
x

ϵ
)∇uϵ∇xΠ1dxdt =

∫
F

∫
Λ

uϵuϵ(∇xΠ0 +∇yΠ1)dxdt+∫
F

∫
Λ

Eu(t,
x

ϵ
)pϵ(∇xΠ0 +∇yΠ1)dxdt+ ϵ

∫
F

∫
Λ

uϵuϵ∇xΠ1dxdt+

ϵ

∫
F

∫
Λ

Eu(t,
x

ϵ
)pϵ∇xΠ1dxdt
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Passing ϵ → 0 with
∇uϵ ⇀2 ∇xu0(t, x) +∇yu1(t, x, y)

uϵ ⇀2 u0(t, x), and pϵ ⇀2 p0(t, x)

we obtain

1

|Y |

∫
F

∫
Λ

∫
Y f

∇tu0Π0dydxdt+
1

|Y |

∫
F

∫
Λ

∫
Y f

2µ(x, y)(∇xu0 +∇yu1)(∇xΠ0+

∇yΠ1)dydxdt =
1

|Y |

∫
F

∫
Λ

∫
Y f

u0u0(∇xΠ0 +∇yΠ1)dydxdt+

1

|Y |

∫
F

∫
Λ

∫
Y f

Eu(t, y)p0(∇xΠ0 +∇yΠ1)dydxdt

which is the weak form of the limit two scale problem. Next we expand and shift the derivatives
from the test functions:

1

|Y |

∫
F

∫
Λ

(∫
Y f

∇tu0dy

)
Π0dxdt−

1

|Y |

∫
F

∫
Λ

∇x.

(∫
Y f

2µ(t, y)(∇xu0+

∇yu1)dy)Π0dxdt−
1

|Y |

∫
F

∫
Λ

∫
Y f

∇y. (2µ(t, y)(∇xu0 +∇yu1))Π1dydxdt =

− 1

|Y |

∫
F

∫
Λ

∫
Y f

∇x.(u0u0)Π0dydxdt−
1

|Y |

∫
F

∫
Λ

∫
Y f

∇y.(u0u0)Π1dydxdt−

1

|Y |

∫
F

∫
Λ

∇x.

(∫
Y f

Eu(t, y)dy

)
p0Π0dxdt−

1

|Y |

∫
F

∫
Λ

∫
Y f

∇y. (Eu(t, y)p0)Π1dydxdt

Now we let Π0 = 0,Π1 = 0 within F×Λ, F×Λ×Y and their boundaries we obtain the homogenized
equation:

ϕ
∂u0

∂t
− 1

|Y |∇x.

(∫
Y f

2µ(t, y)(∇xu0 +∇yu1)dy

)
+ ϕ∇x.(u0u0) + Ēu∇xp0 = 0

(2.14)

almost everywhere in F × Λ with Ēu =
1

|Y |
∫
Y f Eu(t, y)dy, ϕ =

|Y f |
|Y | and

−∇y. (2µ(t, y)(∇xu0 +∇yu1)) = 0 (2.15)

almost everywhere in F × Λ× Y .

It must be noted that (2.14) and (2.15) are respectively the macro problem and cell problem.

Similarly from the weak formulation in (2.9) we have

∫
F

∫
Λ

∇t(C
ϵ
s + Sϵ

d)ωdxdt+

∫
F

∫
Λ

D(t,
x

ϵ
)∇Cϵ

s∇ωdxdt =

∫
F

∫
ω

uϵCϵ
s∇ωdxdt
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for all ω ∈ H1(F × Λ).

We choose test function

ω(t, x) = ω0(t, x) + ϵω1(t, x,
x

ϵ
)

where (ω0, ω1) ∈ C∞
0 (F × Λ)× C∞

0 (F × Λ;C∞
# (Y )) and obtain:

∫
F

∫
Λ

∇t(C
ϵ
s + Sϵ

d)(ω0 + ϵω1)dxdt+

∫
F

∫
Λ

D(t,
x

ϵ
)∇Cϵ

s∇(ω0 + ϵω1)dxdt =∫
F

∫
Λ

uϵCϵ
s∇(ω0 + ϵω1)dxdt

which simplifies to ∫
F

∫
Λ

∇t(C
ϵ
s + Sϵ

d)(ω0 + ϵω1)dxdt+∫
F

∫
Λ

D(t,
x

ϵ
)∇Cϵ

s(∇xω0 + ϵ∇xω1 +∇yω1)dxdt =∫
F

∫
Λ

uϵCϵ
s(∇xω0 + ϵ∇xω1 +∇yω1)dxdt

this further expands to∫
F

∫
Λ

∇t(C
ϵ
s + Sϵ

d)ω0dxdt+

∫
F

∫
Λ

D(t,
x

ϵ
)∇Cϵ

s(∇xω0 +∇yω1)dxdt+

ϵ

∫
F

∫
Λ

∇t(C
ϵ
s + Sϵ

d)ω1dxdt+ ϵ

∫
F

∫
Λ

D(t,
x

ϵ
)∇Cϵ

s∇xω1dxdt+ =∫
F

∫
Λ

uϵCϵ
s(∇xω0 ++∇yω1)dxdt+ ϵ

∫
F

∫
Λ

uϵCϵ
s∇xω1dxdt

Passing ϵ → 0 with

∇Cϵ
s ⇀2 ∇xCs0(t, x) +∇yCs1(t, x, y)

Cϵ
s ⇀2 Cs0(t, x), S

ϵ
d ⇀2 Sd0(t, x)

uϵ ⇀2 u0(t, x)

we obtain

1

|Y |

∫
F

∫
Λ

∫
Yf

∇t(Cs0 + Sd0)ω0dydxdt+

1

|Y |

∫
F

∫
Λ

∫
Yf

D(t, y)(∇xCs0 +∇yCs1)(∇xω0 +∇yω1)dydxdt =

1

|Y |

∫
F

∫
Λ

∫
Yf

u0Cs0(∇xω0 +∇yω1)dydxdt
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Next we expand and shift the derivatives from the test functions

1

|Y |

∫
F

∫
Λ

(∫
Yf

∇t(Cs0 + Sd0)dy

)
ω0dxdt−

1

|Y |

∫
F

∫
Λ

∇x.

(∫
Yf

D(t, y)(∇xCs0 +∇yCs1)dy

)
ω0dxdt−

1

|Y |

∫
F

∫
Λ×Yf

∇y. (D(t, y)(∇xCs0 +∇yCs1))ω1dydxdt =

− 1

|Y |

∫
F

∫
Λ×Yf

∇x.(u0Cs0)ω0dydxdt

− 1

|Y |

∫
F

∫
Λ×Yf

∇y.(u0Cs0)ω1dydxdt

Choosing ω0 = 0, ω1 = 0 within F × Λ, F × Λ× Y and their boundaries we get

|Yf |
|Y | ∇t(Cs0 + Sd0)−

1

|Y |∇x.

(∫
Yf

D(t, y)(∇xCs0 +∇yCs1)dy

)
+

|Yf |
|Y | ∇x.(u0Cs0) = 0 in F × Λ (2.16)

∇y. (D(t, y)(∇xCs0 +∇yCs1)) = 0 in F × Λ× Y (2.17)

Equations (2.16) and (2.17) coincides with the equations obtained through the formal homo-
genization, these are respectively the homogenized macroscopic model and the equation at the
unit cell level from which the cell problem can be obtained. We have thus shown that the results
obtained from the formal homogenization can be verified through this rigorous homogenization
process via two scale convergence.

3 Numerical Computation of the Homogenized Macro-
scopic Problem

The model is used to simulate the piping flow erosion with deposition in a highly erodable soil
under a tangential flow instigated by seepage of water through the embarkment. We imposed a
constant pressure drop between inlet and outlet with a constant flux at the inlet, the tangential
velocities are assumed continuous across ∂Λ. The cell problems and macroscopic equations were
discretize using the finite element method (Galerkin).The momentum equation was decoupled using
the Incremental Pressure Correction Scheme (IPCS) [17, 18].

The numerical task performed include:

(i) Computing the cell problem:

− ∂

∂yi

(
Dik(t, y)

∂χc
j

∂yk

)
=

∂

∂yi
Dij(t, y)

B.C :

(
Dij(t, y) +Dik(t, y)

∂χc
j

∂yk

)
.n(y) = 0
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− ∂

∂yi

(
µik(t, y)

∂χµ
j

∂yk

)
=

∂

∂yi
µij(t, y)

B.C :

(
µij(t, y) + µik(t, y)

∂χc
j

∂yk

)
.n(y) = 0

for i, k = 1, 2,j = 1, 2 and χc
j , χ

µ
j − Y periodic

(ii) Using the results in (i) to compute the Homogenized effective characteristic coefficients:

Dh
=

1

|Y |

∫
Yf

(
Dij(t, y) +Dik(t, y)

∂χc
j

∂yk

)
dy

µh
=

1

|Y |

∫
Yf

(
µij(t, y) + µik(t, y)

∂χµ
j

∂yk

)
dy

Ēu =
1

|Y |

∫
Yf

Eudy

for i, k = 1, 2,j = 1, 2

(iii) We then solved 2D the Homogenized problem :

ϕ
∂u0i

∂t
+ ϕu0j

∂u0i

∂xj
= −Ēu

∂p0
∂xi

+ 2µh ∂
2u0i

∂x2
i

ϕ
∂Cs0

∂t
+ ϕ

∂Sd0

∂t
+ ϕu0j

∂Cs0

∂xj
= Dh ∂

2Cs0

∂x2
i

for i = 1, 2,j = 1, 2

With concluding equations for deposition and pore space dynamics

∂Sd0

∂t
= [βncfnc0 + βcl(1− fnc0)]ΨCs0

∂fnc0

∂t
+ βncΨfnc0Cs0 = 0

Initial and boundary conditions imposed are:

fnc0(0, x1, x2) = 1, Sd0(0, x1, x2) = 0

Cs0(t, 0, x2) = 0, Sd0(t, 0, x2) = 0

p0(t, 0, x2) = Pin, p0(t, L, x2) = 0

u0(t, x1, 0) = 0, u0(t, x1, L) = 0
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Numerical values of the parameters used are listed in Table 1 for a rectangular soil domain of
dimensions 2m× 1m with compacity Csoil = 1− ϕ. The characteristic erosion time was computed

as in [19], ter =
2Lρp

kerpin
= 3000hrs. The density of the water/soil mixture ρ = ϕ(ρp−ρw)+ρw, where

ρw and ρp are water and soil particles density. The time-stepping was performed using Backward
Euler Method [20] with a time step δt = 0.2 for 0 ≤ t ≤ 20

Table 1. Numerical values of parameters

L H pin ρw ρp ϕ
2m 1m 0.1 1000kgm−3 2700kgm−3 0.35

ker Ψ βnc βcl Eu Csoil

0.01 sm−1 1.22× 10−6ms−1 0.73 3.96× 10−4 0.00424 0.65

4 Numerical Results and Discussion

Using the Galerkin finite element on an unstructured triangular mesh we divided the soil domain
into 10116 elements as in Fig. 2. Define an inflow at x1 = 0 and an outflow at x1 = 2. No slip
conditions are imposed on the walls x2 = 0 and x2 = 1. The soil domain was subjected to a constant
pressure drop of 0.1. Under a parabolic velocity profile realized from the momentum equation (Fig.
3), the results obtained in terms of percentage increase and decrease in soil particle deposition and
entrainment are presented.

Fig. 2. Meshing of the soil domain

We observed a decrease in concentration of soil particles in the flow over the period simulated, to
substantiate the extent of decrease we computed the percentage decrease in soil particle concentration
in the flow. At the early stages of the simulation, eroded soil particles transforms the flow into
a concentrated suspension causing enlargement of the pipe downstream. However these eroded
soil particles are entrained towards the outflow, variations in levels of percentage decrease in
concentration of particles in the flow as depicted by our model can be seen in Fig. 4. A rapid
decrease in soil particle concentration was observed at the early stages of the process with higher
levels (almost 50%) close to inflow, this is due to the higher pressure levels at the inflow thereby
propagating the eroded particles from inflow towards outflow. It can be seen that, at the later
stages of the process the decrease in soil particle is much slower as most of the particles entrained
are deposited at the outlet.
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Fig. 5. Percentage increase in concentration of soil particles deposited

Deposition of soil particles entrained occurred over the period. We observed further from the
percentage increase in deposition computed that, the concentrated suspension at the early stages
of the piping flow erosion causes a rapid increase in soil deposition. Though deposition increases,
however we observed as in Fig. 5 that this increase is slower with time thus deposition increases at
a decreasing rate.

5 Conclusion

The paper started off with a microscopic system of equations for modelling piping flow erosion with
deposition in a spatially heterogeneous soil with periodic positioning of pores. The main aim is to
provide a rigorous backing for the formal homogenization results obtained in the earlier paper, thus
we proved the energy bound of the weak solution to the microscopic model thereby preparing the
way for the rigorous passing of ϵ → 0 via two scale convergence. We have accomplished the task of
rigorous homogenization of the microscopic model and have obtained a homogenized macroscopic
model with effective coefficients capable of simulating the piping flow erosion phenomena in a
spatially heterogeneous soil. A strong observation from the numerical simulation was that, soil
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particle concentration in the water/soil mixture decreases but at a decreasing rate whereas soil
particle deposition increases at regions with increasing amount of particle concentration in the flow
causing a reduction in bare pore spaces across the soil domain. These numerical results from the
proposed model clearly shows the various trends [21, 22] associated with soil particle concentration
in the flow and deposition in the piping phenomena.
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