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ABSTRACT 
 

Wine, an alcoholic beverage is usually produced from juice of variety of fruits by the fermentative 
action of microorganisms particularly by yeasts. Several substrates such as pineapple, banana, 
watermelon, pawpaw and other fruits have been used to produce wine using Saccharomyces 
species. This study was undertaken using non- Saccharomyces to produce table wine with 
pineapple and banana fruits as substrates. Standard microbiological procedures were employed for 
yeasts cell isolation, sugar (sucrose) fermentation test, pH, ethanol, sucrose and glucose tolerance 
test were carried out respectively. Alcohol production by the yeasts was screened and the isolates 
were identified by genomic techniques. Twenty-two (22) yeasts isolated from palm wine (YW), 
banana (YB) and pineapple (YP) were screened for their ability to ferment sugar and fourteen (14) 
of the yeast isolates were positive while eight (8) were negative. The fourteen (14) isolates were 
further screened for their ability to tolerate pH, ethanol, sucrose and glucose. Tolerance tests for 
these fourteen (14) yeast isolates recorded values between a range of 3.0-5.0, 0-10% v/v, 5-20% 
w/v and 5-25% w/v for pH, ethanol, sucrose and glucose concentrations respectively. Statistically, 
there was a significant difference in the interaction effect for pH, ethanol, sucrose and glucose 
tolerance (OD600 nm) for yeast isolates at p value ≤ 0.0001. Five (5) yeast isolates had high 
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tolerance ability to pH, ethanol, sucrose and glucose and were further screened for their ability to 
produce alcohol. The five (5) yeast isolates were identified as Meyerozyma guilliermondii strain 
1621, Pichia guilliermondii strain PX-PAT, Meyerozyma caribbica strain Kw 1S7Y2, Meyerozyma 
caribbica strain Y-27400, Kodamaea ohmeri strain ww1-1 and they produced alcohol content of 
7.6%, 6.5%, 2.9%, 2.5% and 0.3% respectively. Meyerozyma guilliermondii strain 1621 and Pichia 
guilliermondii strain PX-PAT 18 S isolated from palm wine exhibited good characteristics and 
produced high quantity of alcohol and are suitable for alcohol fermentation of substrates for wine 
production. 

 
 
Keywords: Wine production; banana and pineapple substrates; non-saccharomyces species; 

Meyerozyma guilliermondii; Pichia guilliermondii; yeast tolerance. 
 

1. INTRODUCTION 
 

Wine is a product obtained from the fermentation 
of grapes and grape wine is the most 
economically important fruit wine [1]. In the 
European Union, wine is legally defined as the 
fermented juice of grapes. Wine can be made 
from virtually many plant substrates containing 
18 to 25% of sugars that can be fermented [2]. 
Wine making involves the use of yeast to ferment 
the “must” of a chosen fruit or fruits for a number 
of days, depending on the objective of the wine 
maker. The yeast which is the main organism 
responsible for alcoholic fermentation belongs to 
the genus, Saccharomyces. 
 

Fruits such as banana, cucumber, pineapple and 
others are used in wine production [3,4,5]. Wine 
production has been practiced with various fruits 
such as apple, pear, strawberry, cherries, plum, 
banana, pineapple, oranges, cucumber, 
watermelon, guava etc. using species of 
Saccharomyces cerevisiae which converts the 
sugar in the fruit juices into alcohol and organic 
acids that later react to form aldehydes, esters 
and other chemical compounds which also help 
to preserve the wine [6,7]. The wine produced 
bears the name of the fruit or fruit mixture used in 
its production. 
 

Palm wine is the fermented sap of the tropical 
plant, Palmae. It is obtained from the sap of palm 
trees such as Elaesi and Raphia species which 
contain a heavy suspension of living yeasts and 
bacteria [8]. It is a refreshing alcoholic drink 
widely produced and consumed in very large 
quantities in the South-Eastern part of Nigeria, 
Asia and Southern America [9]. It contains 
nutritionally important components including 
amino acids, proteins, vitamins and sugar [8]. 
These components make this wine a veritable 
medium for the growth of microorganisms where 
growth in turn, changes the physicochemical 
conditions of the wine giving rise to competition 
and succession of organisms. 

Palm wine has varieties of flavours ranging from 
sweet (unfermented) to sour (fermented)          
and vinegary. It is produced by a succession of 
microorganisms (gram- negative bacteria,      
lactic acid bacteria, acetic acid bacteria and 
yeasts). Yeasts isolated from palm wine      
belong to the genera; Saccharomyces,       
Pichia, Schizosaccharomyces, Kloeckera, 
Endomycopsis, Saccharomyeoides and Candida 
which find their way into the wine from a variety 
of sources like air, rudimentary utensils used for 
tapping the palm wine, previous brew and the 
palm trees. Hence, it serves as a source of single 
cell protein and vitamins [10,6]. Similar reports by 
other authors have confirmed the efficacy of 
yeasts isolated from palm wine for wine 
production [11,12]. 

 
Yeasts play a key role in wine production and 
they can arbitrarily be divided into two 
categories:  Saccharomyces and non-
Saccharomyces.  Although many genera and 
species of yeasts are found in musts, S. 
cerevisiae is the main yeast strain that is 
commonly reported to be responsible for 
alcoholic fermentation [13,14]. However,    
several researchers in their studies have 
reported the use of mixed cultures of non- 
Saccharomyces (like Pichia kluyveri, Pichia 
fermentans Schizosaccharomyces pombe, 
Lachancea thermotolerans, Torulaspora 
delbrueckii, Hanseniaspora guilliermondii)             
and S. cerevisiae in wine production 
[15,16,17,18,19,20,21,22,23,24,25]. Clemente-
Jimenez JM et al, Benito S et al. [25,26] reported 
P. fermentans and P. guilliermondii as good 
strains for must fermentation as mixture with S. 
cerevisiae improves the aroma as well as         
the characteristics features of the wine.          
Non-Saccharomyces (yeast) genera frequently 
found in grapes and “must” include; 
Hanseniaspora (Kloeckera), Candida, 
Metschnikowia, Brettanomyces, Kluyveromyces, 
Schizosaccharomyces, Torulaspora, 
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Rhodotorula, Zygosaccharomyces, 
Cryptococcusand Aureobasidium pullulans 
[27,28,29,30,31,32,33]. 
 
Recent researches have focused on the role that 
non- Saccharomyces (yeast) play in wine 
production. The use of controlled mixed cultures 
of selected Saccharomyces and non- 
Saccharomyces strains have advantages over 
fermentations inoculated with pure cultures of    
S. cerevisiae. The mixed fermentation leads to 
the production of wines with more desirable 
characteristics, and starter cultures containing 
non- Saccharomyces (yeast), namely 
Torulaspora delbrueckii, Lachancea 
thermotolerans, Pichia kluyveri and 
Metschnikowia pulcherrima are available 
commercially [31]. 
 

2. MATERIALS AND METHODS 
 
2.1 Sample Collection 
 
Ripe Queen pineapple (Ananas spp.) and 
Cavendish banana (Musa spp.) fruits were 
purchased from Mile 3 market, Port Harcourt, 
Rivers State, Nigeria while fresh palm wine from 
Elaeis sp. was obtained from Chokocho 
community, Etche Local Government Area of 
Rivers State, Nigeria. The fruits were carried in a 
sterile plastic container, while sterile plastic bottle 
was used for collection of fresh palm wine 
samples in an ice chest cooler at 4°C and 
transported to the Microbiology Laboratory of 
Rivers State University for further analyses. 
 

2.2 Microbiological Analyses 
 
All glass wares used were sterilized in an 
autoclave at 121°C at 15 psi for 15 minutes. 
Yeast Extract Dextrose Peptone (YEDP) broth 
was used for isolation and Potato dextrose agar 
(PDA) was used for the inoculation and 
identification of the yeast isolates [34]. 
 
Yeast Extract Dextrose Peptone (YEDP) broth 
was prepared with 40 g of peptone water, 10 g of 
yeast extract and 20 g of dextrose sugar 
(sucrose) in 1litre of distilled water [35]. The 
mixture was mixed vigorously and then sterilized 
by autoclaving at 121°C, 15 psi for 15 minutes. It 
was allowed to cool before inoculation. Fifty (50) 
mg/L of tetracycline was added to inhibit bacterial 
growth.  
 
Potato Dextrose Agar (PDA) medium was used 
for the isolation of the yeast. This was prepared 

according to manufacturer’s instructions by 
dispensing 39 g of agar into 1000 ml of distilled 
water. The mixture was mixed vigorously and 
then sterilized by autoclaving at 121°C, 15psi for 
15 minutes. It was allowed to cool to 45°C and 
dispensed into petri dishes for solidification and 
dried in a hot air oven before inoculation. Fifty 
(50) mg/L of tetracycline was added to the PDA 
media to inhibit bacterial growth. 
 

2.3 Isolation and Maintenance of the 
Pure Yeast Cultures  

 
The 48 hours fermented palm wine was agitated 
in a rotary shaker for thirty minutes for even 
distribution and an aliquot of 0.1ml of the palm 
wine was inoculated onto PDA medium in 
duplicates using the spread plate technique and 
incubated for 48 hours at 30°C. The colonies that 
appeared on the plates were further sub-cultured 
and incubated for another 24 hours at 30°C in 
order to obtain pure cultures [3]. 
 
One hundred (100) grams of the crushed banana 
and pineapple respectively were added to the 
broth and incubated for 48 hours at 30°C to 
enhance microbial growth. An aliquot of 0.1 ml of 
the YEDP broth containing the banana and 
pineapple substrates/ juice were inoculated onto 
Potato Dextrose Agar (PDA) media in duplicates 
using a glass spreader. The plates were 
incubated at 30°C for 48 hours. 
 
The colonies that appeared on the plates were 
further sub-cultured and incubated for another 48 
hours at 30°C in order to obtain pure cultures. 
Twenty-two isolates were obtained and the pure 
cultures of the isolates were stored in 10% 
glycerol at 4°C in Bijou bottles. 
 

2.4 Screening of Yeast Isolates 
 
2.4.1 Sugar fermentation test 
 
The twenty- two isolates were tested for their 
ability to assimilate and ferment sugar. The 
isolates were inoculated into a test tube 
containing Yeast extract peptone dextrose 
(YEPD) broth with an inverted Durham tube. The 
broth was prepared by adding 15 g of peptone 
water, 10 g of yeast extract and 20 g of sucrose 
in 1000 ml of distilled water and sterilized by 
autoclaving at 121°C Psi for 15 minutes. Ten 
(10) ml of the broth containing the isolates were 
incubated for 48 hours at 30°C and the liberation 
and trapping of gas in the durham’s tube 
indicated the result of each test; the presence of 
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gas was taken as evidence of fermentative 
activity and the absence of gas was taken as an 
evidence of non- fermentative activity [36]. 
Fourteen out of the twenty-two isolates were 
positive for the sugar fermentation test and 
further screened for their ability in wine 
production. Eight isolates were negative for the 
sugar fermentation test and were not further 
screened because their inability to ferment sugar 
signifies their inability to ferment sugar in wine 
“must” and produce alcohol. 
 
2.4.2 Ethanol tolerance test 

 
The ability of the fourteen yeast isolates to 
tolerate different concentrations of ethanol was 
examined according the procedure described by 
Kumar RS et al. [37] with some modifications. A 
loopful of yeast isolate was inoculated into 10 ml 
of YEDP broth of five different concentrations of 
ethanol (0%, 5%, 10%, 15%, 20% v/v). The 
inoculated tubes were incubated at 30°C for 48 
hours. The growth of the inoculated yeast 
isolates was examined and their optical density 
(OD) was ascertained using a 
spectrophotometer. 

 
2.4.3 pH tolerance test  

 
The fourteen yeast isolates were examined for 
their ability to tolerate various pH level using the 
procedure described by Kumar RS et al. [37] with 
some modifications. A loopful of yeast isolate 
was inoculated into 10 ml of YEDP broth of 
seven different pH (2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 
v/v) levels. The inoculated tubes were incubated 
at 30°C for 48 hours. The growth of the 
inoculated isolates was examined and their 
optical density (OD) was ascertained using a 
spectrophotometer. 
 
2.4.4 Sucrose tolerance test  

 
The ability of the fourteen yeast isolates to 
tolerate different concentrations of sucrose      
was examined using the procedure        
described by Kumar RS et al. [37] with some 
modifications. A loopful of yeast isolate was 
inoculated into 10 ml of YEDP broth of           
seven different concentrations of sucrose (0%, 
5%, 10%, 15%, 20%, 25%, 30% w/v). The 
inoculated tubes were incubated at 30°C for 48 
hours. The growth of the inoculated yeast 
isolates was examined and their optical density 
(OD) was ascertained using a 
spectrophotometer. 

2.4.5 Glucose tolerance test  
 

The fourteen yeast isolates were examined for 
their ability to tolerate different concentrations of 
glucose using the procedure described by Kumar 
RS et al. [37] with some modifications. A loopful 
of yeast isolate was inoculated into 10ml of 
YEDP broth of seven different concentrations of 
glucose (0%, 5%, 10%, 15%, 20%, 25%, 30% 
w/v). The inoculated tubes were incubated at 
30°C for 48 hours. The growth of the inoculated 
yeast isolates was examined and their optical 
density (OD) was ascertained using a 
spectrophotometer. 
 

2.4.6 Alcohol production test 
 

Five out of the fourteen isolates were positive for 
the tolerance tests and were further screened for 
their ability to produce alcohol while the 
remaining seven isolates were not further 
screened. A conical flask was cleaned with 
distilled water, sterilized and allowed to cool. The 
weight of the cooled dried flask was recorded as 
W1. The flask was filled with deionized water; the 
surface of the flask was cleaned with a cotton 
wool and weighed as W2. The flask was emptied 
and cleaned twice with YEDP broth containing 
300 g of sucrose and thereafter the flask was be 
filled to the brim with the broth containing each 
isolate. The surface of the flask was cleaned with 
cotton wool and weighed as W3. The specific 
gravity was calculated as: 
 

Speci�ic gravity =  
S

W
 

 

Where  
 

S= Weight of the volume of the “broth”        
(W3-W1) 

W=Weight of the volume of water (W2-W1) 
 

Each of the yeast isolate were inoculated 
separately in the YEDP broth containing 300 g 
sucrose and incubated at 30°C for 48 hours. 
After 48 hours, the specific gravity of the YEDP 
broth after fermentation was also determined.  
 

The alcohol content was determined using the 
density and it was calculated according to the 
method described by Rangana S et al. [38] as: 
 

%ABV= (Original specific gravity – Final 
specific gravity) X 131.25 

 

Where,  
 

ABV is alcohol by volume. 
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2.5 Genomic Identification 
 
Molecular identification of the isolates was done 
using the Polymerase chain Reaction (PCR) to 
determine the presence of 18 S rRNA. This was 
done by extracting the DNA, carrying out PCR 
and sequencing of the amplified DNA (amplicon). 
 

2.6 Extraction (Boiling Method) of the 
DNA 

 
Extraction was done using a ZR fungal/ bacterial 
DNA prep extraction kit. A heavy growth of the 
pure culture of the suspected isolate was 
suspended in 200 microlitre of isotonic buffer into 
a ZR Bashing Bead Lysis tubes and 750 
microlitre of lysis solution was added to the tube. 
The tubes were secured in a bead beater fitted 
with a 2 ml tube holder assembly and processed 
at maximum speed for 5 minutes. The ZR 
bashing bead lysis tubes were centrifuged at 
10,000 xg for 1 minute. Four hundred (400) 
microlitres of supernatant was transferred to a 
Zymo- Spin IV Filter (orange top) in a collection 
tube and centrifuged at 700 xg for 1 minute. One 
thousand two hundred microlitres (1200) of 
fungal/ bacterial DNA binding buffer was added 
to the filtrate in the collection tubes bringing it to 
a final volume of 1600 microlitre. Eight hundred 
(800) microlitres was then transferred to a Zymo–
spin IIC column in a collection tube and 
centrifuged at 10,000 xg for 1 minute and the 
flow through was discarded from the collection 
tube. The remaining volume was transferred to 
the same Zymo- spin and spun. Two hundred 
microlitre (200) of the DNA pre- washed buffer 
was added to the Zymo- spin IIC in a new 
collection tube and spun at 10,000 xg for 1 
minute followed by the addition of 500 microlitre 
of fungal/ bacterial DNA wash buffer and 
centrifuged at 10,000 xg for 1 minute. The Zymo-
spin IIC column was transferred to a clean 1.5 
microlitre centrifuge tube. 100 microlitre of DNA 
elution buffer was added to the column matrix 
and centrifuged at 10,000 xg microlitre for 30 
seconds to elute the DNA. The ultra-pure DNA 
was then stored at -20 degrees for other 
downstream reactions [39]. 
 

2.7 Quantification of the Fungal DNA 
 
The extracted genomic DNA was quantified 
using the Nanodrop 1000 spectrophotometer. 
The software of the equipment was launched by 
double clicking on the Nanodrop icon. The 
equipment was initialized with 2 µl of sterile 

distilled water and blanked using normal saline. 
Two mirolitre of the extracted DNA was loaded 
onto the lower pedestal and the upper pedestal 
was brought down to contact the extracted DNA 
on the lower pedestal. The DNA concentration 
was measured by clicking on the “measure” 
button [40].  
 

2.8 Amplification of Internally 
Transcribed Sequence (ITS) Region 

 
The ITS region of the genes of the isolates was 
amplified using the ITS4: 5ˈ-
TCCTCCGCTTATTGATATGS-3ˈ and ITS5: 5ˈ-
GGAAGTAAAAGTCGTAACAAGG-3ˈ, primers 
on ABI 9700 Applied Bio systems thermal cycler 
at a final volume of 30 microlitres for 35 cycles. 
The PCR mix included: X2 Dream taq Master mix 
(taq polymerase, DNTPs, MgCl), the primers at a 
concentration of 0.4 M and the extracted DNA as 
a template. The PCR conditions were as follows: 
Initial denaturation at 95°C for 5 minutes, 
denaturation at 95°C for 30 seconds, annealing 
at 53°C for 30 seconds, extension at 72°C for 30 
seconds for 35 cycles and final extension at 
72°C for 5 minutes. The product was resolved on 
1% agarose gel at 120 V for 15 minutes and 
visualized on a blue light transilluminator [39]. 
 
2.9 Sequencing 
 
Sequencing was done using the BigDye 
Terminator kit on a 3510 ABI sequencer. The 
sequencing was done at a final volume of 10µl, 
the components included 0.25 ul BigDye 
terminator v1.1/3.1, 2.25 µl of 5 x BigDye 
sequencing buffer, 10uM primer, PCR primer and 
2-10 ng PCR template per 100 bp. The 
sequencing condition was as follows: 32 cycles 
of 96°C for 10 s, 55°C for 5 s and 60°C for 4 
minutes [41]. 
 
2.10 Phylogenetic Analysis and 

Restriction Fragment Length 
Polymorphorism 

 
The obtained sequences were edited using the 
bioinformatics logarithm Trace edit. Similar 
sequences were downloaded from the National 
Center for Biotechnology Information (NCBI) data 
base using BLASTIN. These sequences were 
aligned using Clustal X. the evolutionary history 
was inferred using the Neighbor- Joining method 
in MEGA 10.0 [42]. The bootstrap consensus 
tree inferred from 500 replicates [43] is taken to 
represent the evolutionary history of the taxa 
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analyzed. The evolutionary distances were 
computed using the Jukes- Cantor [44]. 
Restriction Fragment Length Polymorphorism 
procedure is as follows: Cocktail mix consisting 
of 10 μL PCR products, 5 μL of 10X NE Buffer, 5 
μL of Restriction Enzyme (EcoR1-HF with cat log 
R3101) and then made up to 50 μL reaction 
using 30 μL of nuclease free water. The cocktail 
mix was incubated at 37°C for 1hour after which 
the enzyme was inactivated at 80°C for 15 mins. 
The PCR fragments were resolved on 2% 
agarose gel electrophoresis. 
 

3. RESULTS 
 

Table 1 and Fig. 1 presents the results obtained 
for isolates subjected to sugar fermentation test 
after 48 hours. The yeasts were given keys; YB 
denoting yeasts isolated from banana, YP for 
yeasts isolated from pineapple and YW, yeasts 
isolated from palm wine. The isolates from 
pineapple (YP1, YP2) and palm wine (YW1, 
YW3, YW4, YW7, YW9) were able to ferment the 
sugar after 24 hours. The isolates from banana 
(YB1, YB2, YB4, YB5, YB6), pineapple (YP3, 
YP4), were able to ferment the sugar after 48 
hours while the isolates from banana (YB3), 
pineapple (YP5, YP6) and palm wine (YW2, 
YW5, YW8, YW10) didn’t have the ability to 
ferment the sugar at all. The isolates that could 
not ferment sugar after 24 and 48 hours were not 
further screened while the yeast isolates that had 
the ability to ferment sugar after 24 and 48 hours 
of fermentation were subjected to further 
screening for their efficacy in wine production. 
 

Figs. 2 and 3 are the results of the tolerance 
tests for pH used to screen the yeast isolates. 
The isolates were inoculated into Yeast Extract 
Dextrose Peptone (YEDP) broth containing 
various concentrations of pH. The isolates were 

incubated at 30°C for 48 hours and their optical 
density (OD) was read using a 
spectrophotometer. The result of the OD of the 
yeast isolates were 0.403 – 1.172; 0.53 – 1.394; 
1.078 – 1.980; 1.166 – 1.765; 1.187 – 1.722; 
1.170 – 1.752 and 1.230 – 1.734 at a pH of 2.0, 
2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 respectively. The 
broken line indicates the line of best fit. The 
yeast isolates with OD above the broken line 
were tolerant. The pH values above the line are 
the level of pH the yeast isolates were able to 
tolerate. The graph showed a positive slope 
which indicates that there was an increase in 
tolerance with an increase in pH value. The 
isolates were able to tolerate a pH range of 3.0-
5.0 with an optimum value at 5.0. Statistically, 
analysis of variance (anova) test revealed that 
there was a significance difference between the 
optical densities of the yeast isolates for pH 
(P≤0.0001). 

 

Figs. 4 and 5 are the results of the tolerance 
tests for ethanol used to screen the yeast 
isolates. The isolates were inoculated into Yeast 
Extract Dextrose Peptone (YEDP) broth 
containing various concentrations of ethanol. The 
isolates were incubated at 30°C for 48 hours and 
their optical density (OD) was read using a 
spectrophotometer. The result of the OD of the 
yeast isolates were 1.038 – 1.854; 0.909 – 1.771; 
0.695 – 1.770; 0.099 – 1.872 and 0.516 – 1.840 
for ethanol concentration of 0, 5, 10, 15 and 20% 
v/v respectively. The broken line indicates the 
line of best fit. The yeast isolates with OD above 
the broken line were tolerant. The ethanol 
concentration above the line is the level of 
ethanol the yeast isolates were able to tolerate. 
The graph showed a negative slope which 
indicates that there was a decrease in ethanol 
tolerance with an increase in ethanol 

 

 
 

Fig. 1. Sugar fermentation of yeast isolates within 24 and 48 hours 
“Both” indicates the frequency of yeast isolates that were positive or negative at 24 and 48 hours 
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Table 1. Sugar fermentation by yeast isolates at 24 and 48 hours

Isolates 
YB1 
Meyerozyma caribbica (YB2) 
YB3 
YB4 
YB5 
YB6 
YP1 
YP2 
YP3 
Kodamaea ohmeri (YP4) 
YP5 
YP6 
Meyerozyma guilliermondii (YW1) 
YW2 
Pichia guilliermondii (YW3) 
YW4 
YW5 
YW6 
YW7 
YW8 
Meyerozyma caribbica (YW9) 
YW10 

KEY: YB 
YP 
YW

 

 

Fig. 2. Interaction effect plot for pH tolerance (
 

concentration. The yeast isolates were able to 
tolerate ethanol concentrations of 0
optimum value at 0% v/v. Statistically, analysis of 
variance (anova) test revealed that there was a 
significance difference between the optical 
densities of the yeast isolates for ethanol 
(P≤0.0001). 
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Sugar fermentation by yeast isolates at 24 and 48 hours 
 

Fermentation at 24 Fermentation at 48
Negative Positive 
Negative Positive 
Negative Negative 
Negative Positive 
Negative Positive 
Negative Positive 
Positive Positive 
Positive Positive 
Negative Positive 
Negative Positive 
Negative Negative 
Negative Negative 

 Positive Positive 
Negative Negative 
Positive Positive 
Positive Positive 
Negative Negative 
Negative Negative 
Positive Positive 
Negative Negative 
Positive Positive 
Negative Negative 

KEY: YB – Yeast isolated from banana; 
YP – Yeast isolated from pineapple; 
YW– Yeast isolated from palm wine; 
Negative – no sugar fermentation; 

Positive – sugar fermentation 

2. Interaction effect plot for pH tolerance (OD600 nm) of the yeast isolates

. The yeast isolates were able to 
tolerate ethanol concentrations of 0-10% with an 
optimum value at 0% v/v. Statistically, analysis of 
variance (anova) test revealed that there was a 
significance difference between the optical 

es for ethanol 

Figs. 6 and 7 are the results of the tolerance 
tests for sucrose used to screen the yeast 
isolates. The isolates were inoculated into Yeast 
Extract Dextrose Peptone (YEDP) broth 
containing different concentrations of sucrose. 
The isolates were incubated at 30°C for 48 hours 
and their optical density (OD) was read using a 
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nm) of the yeast isolates 

6 and 7 are the results of the tolerance 
tests for sucrose used to screen the yeast 
isolates. The isolates were inoculated into Yeast 
Extract Dextrose Peptone (YEDP) broth 
containing different concentrations of sucrose. 

isolates were incubated at 30°C for 48 hours 
and their optical density (OD) was read using a 



spectrophotometer. The result of the OD of the 
yeast isolates were 0.476 – 1.587; 1.319 
1.340 – 2.297; 1.000 – 2.297; 1.070 
1.118 – 2.058 and 0.903 –1.988 at sucrose 
concentrations of 0, 5, 10, 15, 20, 25 and 30 % 
w/v respectively. The broken line indicates the 
line of best fit. The yeast isolates with OD above 
the broken line were tolerant. The sucrose 
concentrations above the line are the level 
sucrose the yeast isolates were able to tolerate. 
 

 
Fig. 3. Main effects plot of yeast isolates pH tolerance (OD600

 

 
Fig. 4. Interaction effect plot for ethanol tolerance (
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spectrophotometer. The result of the OD of the 
1.587; 1.319 – 1.963; 

2.297; 1.070 – 2.225; 
1.988 at sucrose 

concentrations of 0, 5, 10, 15, 20, 25 and 30 % 
w/v respectively. The broken line indicates the 

The yeast isolates with OD above 
the broken line were tolerant. The sucrose 
concentrations above the line are the level of 
sucrose the yeast isolates were able to tolerate. 

The graph showed a negative slope which 
indicates that there was a decrease in tolerance 
with an increase in sucrose concentration. The 
yeast isolates were able to tolera
concentrations of 5-20% with an optimum value 
at 10% w/v. Statistically, analysis of variance 
(anova) test revealed that there was a 
significance difference between the optical 
densities of the yeast isolates for sucrose 
(P≤0.0001). 

cts plot of yeast isolates pH tolerance (OD600 nm) test

4. Interaction effect plot for ethanol tolerance (OD600 nm) of yeast isolates
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densities of the yeast isolates for sucrose 
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5. Main effects plot for ethanol tolerance (OD600 nm) for yeast isolates

Interaction effect plot of sucrose tolerance (OD600 nm) of yeast isolates

7. Main effects plot for sucrose tolerance (OD600 nm) for yeast isolates
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Figs. 8 and 9 are the results of the tolerance 
tests for glucose used to screen the yeast 
isolates. The isolates were inoculated into Yeast 
Extract Dextrose Peptone (YEDP) broth 
containing different concentrations of glucose. 
The isolates were incubated at 30°C
and their optical density (OD) was read using a 
spectrophotometer. The result of the OD of the 
yeast isolates were 0.909 – 1.609; 1.389 
1.403 – 2.393; 1.674 – 2.397; 1.394 
1.374 – 2.290 and 1.143 – 2.210 at glucose 
concentrations of 0, 5, 10, 15, 20, 25 and 30 % 
w/v respectively. The broken line indicates the 
line of best fit. The yeast isolates with OD above 
the broken line were tolerant. The glucose 
concentrations above the line are the level of 
glucose the yeast isolates were able to tolerate. 
The graph showed a negative slope which 
indicates that there was a decrease in tolerance 
with an increase in glucose concentration. The 
yeast isolates were able to tolerate glucose 
 

 

Fig. 8. Interaction effect plot 
 

Fig. 9. Main effects plot for sucrose tolerance (OD600
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8 and 9 are the results of the tolerance 
tests for glucose used to screen the yeast 
isolates. The isolates were inoculated into Yeast 
Extract Dextrose Peptone (YEDP) broth 
containing different concentrations of glucose. 

C for 48 hours 
and their optical density (OD) was read using a 
spectrophotometer. The result of the OD of the 

1.609; 1.389 – 2.210; 
2.397; 1.394 – 2.365; 

2.210 at glucose 
tions of 0, 5, 10, 15, 20, 25 and 30 % 

w/v respectively. The broken line indicates the 
The yeast isolates with OD above 

the broken line were tolerant. The glucose 
concentrations above the line are the level of 

ere able to tolerate. 
The graph showed a negative slope which 
indicates that there was a decrease in tolerance 
with an increase in glucose concentration. The 
yeast isolates were able to tolerate glucose 

concentrations of 5- 25% with an optimum value 
at 10% w/v. Statistically, analysis of variance 
(anova) test revealed that there was a 
significance difference between the optical 
densities of the yeast isolates for glucose 
(P≤0.0001). 
 

Fig. 10 shows the result of the percentage of 
alcohol produced by each yeast isolate after 48 
hours of fermentation. M. guilliermondii 
1621 produced 7.6% alcohol, P. guilliermondii 
strain PX-PAT 18S produced 6.5% alcohol, 
caribbica strain Kw 1S7Y2 18S produced 2.9% 
alcohol, M. caribbica strain Y
produced 2.5% alcohol while K. ohmeri 
ww1-1 18 S produced 0.3% alcohol.  
guilliermondii strain 1621 and P. guilliermondii 
strain PX-PAT 18S produced the highest amount 
of alcohol of 7.6 and 6.5% respectively and were 
chosen as the fermenting yeasts for the 
production. 

8. Interaction effect plot of glucose tolerance (OD600 nm) of yeast isolates

 

9. Main effects plot for sucrose tolerance (OD600 nm) for yeast isolates
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Fig. 10. Alcohol production test of yeast isolates 
 

Table 2. Morphological and microscopic identification of the isolates 
 

Cultural characteristics Microscopic characteristics Probable organism 
Creamy, circular, raised 
colonies that are small in size 

Oval with budding Yeast 

Creamy, circular, raised 
colonies that are large in size 

Oval with budding Yeast 

 
Table 2 present the colonial morphology and cell 
characteristics used to identify the isolates 

 
Plate 1 shows the extracted and amplified 
internally transcribed sequence (ITS) regions of 
the yeast isolates after agarose gel 
electrophoresis. The region is unique amongst 
fungi. This agarose gel electrophoresis shows 
that the DNA of the yeasts was actually extracted 
and amplified. Lanes YW1 to YW9 represents 
the ITS gene bands of the yeast isolates 
occurring at 650 base pair (bp) while lane M 
represents the molecular ladder which is 200bp. 
 
Plate 2 shows RFLP using EcoR1 Restriction 
Endonuclease. M is a 50 bp molecular weight 
ladder while lanes YW1 to YW9 indicates the 
yeast isolates. 
 
Fig. 11 is the phylogenetic tree showing the 
evolutionary distance between the yeast isolates. 
The obtained ITS sequence from the isolate 
produced an exact match during the megablast 
search for highly similar sequences from the 
NCBI non-redundant nucleotide (nr/nt) database. 
The ITS region showed a percentage similarity to 
other species at 89-96%. The evolutionary 
distances computed using the Jukes-Cantor 
method were in agreement with the phylogenetic 
placement of ITS region of the isolate YW1 within 

the Meyerozyma sp. and revealed a closely 
relatedness to M. guilliermondii strain 1621, 
isolate YB2 also belonged to the Meyerozyma 
sp. and revealed a closely relatedness to M. 
caribbica strain Y-2700 18 S and isolate YW9 
also within the Meyerozyma sp. revealed a 
closely relatedness to M. caribbica strain Kw 
1S7Y2 18 S. Isolate YW3 was within the Pichia 
sp. and revealed a closed relatedness to P. 
gulliermondii strain PX-PAT 18 S while isolate 
YP4 belonged to the Kodamaea sp. and revealed 
a close relatedness to K. ohmeri strain ww1-18S. 
 
Table 3 shows the molecular results of the 
isolates using the NCBI data base to show the 
percentage relatedness 
 

4. DISCUSSION 
 
Sugar such as sucrose is one of the main 
substrates fermented from fruit juice into alcohol 
(ethanol), carbon dioxide and lactic acid. These 
constituents contribute to the chemical 
composition and sensory qualities of wine [45,46] 
Fourteen (14) out of the twenty-two (22) yeast 
isolates were able to ferment sugar at 24 and 48 
hours of inoculation. This was in accordance with 
the findings of Antia EU et al. [47] who reported 
the ability of 20 yeast isolates to ferment sucrose 
after 24 hours. 
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Plate 1. Agarose gel electrophoresis of the I
Lanes YW1 to YW9 represents the ITS gene bands of the yeast isolates while lane M 

 
Plate 2. Restriction fragment length polymorphism

 
According to Fleet GH, [48], pH plays an 
important role in wine fermentation because it 
directly affects the stability of wine. Yeasts, lactic 
acid bacteria and even spoilage bacteria grow 
well at pH 4.5.The preferred pH for wine 
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Agarose gel electrophoresis of the ITS region of the yeast isolates
Lanes YW1 to YW9 represents the ITS gene bands of the yeast isolates while lane M represents the molecular 

ladder 
 

fragment length polymorphism using EcoR1 restriction endonuclease

According to Fleet GH, [48], pH plays an 
important role in wine fermentation because it 
directly affects the stability of wine. Yeasts, lactic 
acid bacteria and even spoilage bacteria grow 

pH for wine 

production is 3.6. Wine yeasts and some lactic 
acid bacteria can still thrive in a pH range of 3.3
3.6 while spoilage bacteria and undesirable 
organisms cannot [45]. The fourteen (14) yeasts 
isolates were screened for their ability to tolerate 
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represents the molecular 

 

iction endonuclease 

production is 3.6. Wine yeasts and some lactic 
acid bacteria can still thrive in a pH range of 3.3-
3.6 while spoilage bacteria and undesirable 
organisms cannot [45]. The fourteen (14) yeasts 
isolates were screened for their ability to tolerate 



different pH (2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0) and 
five (5) isolates identified as M. guilliermondii 
strain 1621, M. caribbica strain Y-27400 18S, 
guilliermondii strain PX-PAT 18S, 
strain ww1-1 18S and M. caribbica 
1S7Y2 18S were able to tolerate pH range of 3.0 
to 4.5. Since the preferred pH for wine production 
is 3.6, the isolates are suitable for wine 
production. This is in accordance with the 
findings of Roukas T, [49], who observed that 
cerevisiae was able to tolerate a pH range of 3.5 
to 6.5 [50] who reported that yeast isolates were 
able to tolerate a wide pH range of 2.0 to 4.0.
 
Ethanol tolerance is a unique property of yeasts 
that makes it exploitable for industrial 
applications [51]. The fourteen (14) y
 

Table 3. Sequence identification from NCBI BLAST HITS and their percentage relatedness

S/N Sequence 
code 

NCBI BLAST relative

1 YW1 Meyerozyma guilliermondii 
strain 1621

2 YB2 Meyerozyma caribbica 
Y-27400 18S

3 YW3 Pichia guilliermondii 
PAT 18S 

4 YP4 Kodamaea ohmeri 
1 18S 

5 YW9 Meyerozyma caribbica 
Kw 1S7Y2 18S

 

Fig. 11. Phylogenetic tree showing evolutionary distance between the yeast isolates
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different pH (2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0) and 
M. guilliermondii 

27400 18S, P. 
PAT 18S, K. ohmeri 

M. caribbica strain Kw 
1S7Y2 18S were able to tolerate pH range of 3.0 
to 4.5. Since the preferred pH for wine production 
is 3.6, the isolates are suitable for wine 
production. This is in accordance with the 
findings of Roukas T, [49], who observed that S. 

o tolerate a pH range of 3.5 
to 6.5 [50] who reported that yeast isolates were 
able to tolerate a wide pH range of 2.0 to 4.0. 

Ethanol tolerance is a unique property of yeasts 
that makes it exploitable for industrial 
applications [51]. The fourteen (14) yeast isolates 

screened for tolerance to different concentrations 
of ethanol (0, 5, 10, 15 and 20 % v/v), proved 
that the yeast isolates were tolerant to ethanol 
concentrations at 10% v/v. This implies that the 
yeast strains can remain metabolically active 
the fermentation medium, when ethanol builds up 
to 10%. This result is in accordance with the 
findings of Nwachukwu IN et al. [52] who 
reported that S. globosus and S. cerevisiae
able to tolerate ethanol concentration at 10 and 
11% v/v respectively. Aminu et al. [53] reported 
that S. cerevisiae was able to tolerate ethanol 
concentration at 8% v/v. This report was in 
contrast with the findings of Kumar RS et al. [37] 
and Antia EU et al. [47] who also reported that 
cerevisiae was able to tolerate ethanol at 20% 
v/v.  

Sequence identification from NCBI BLAST HITS and their percentage relatedness
 

NCBI BLAST relative Accession number Percentage (%) 
relatedness

Meyerozyma guilliermondii 
1621 

    MK418263 91.80%

Meyerozyma caribbica strain 
27400 18S 

    KJ705036 95.30%

Pichia guilliermondii strain PX-
 

    GQ497898 94.00%

Kodamaea ohmeri strain ww1-     EF190229 96.80%

Meyerozyma caribbica strain 
1S7Y2 18S 

    KF268353 89.70%

tree showing evolutionary distance between the yeast isolates
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screened for tolerance to different concentrations 
of ethanol (0, 5, 10, 15 and 20 % v/v), proved 
that the yeast isolates were tolerant to ethanol 
concentrations at 10% v/v. This implies that the 
yeast strains can remain metabolically active in 
the fermentation medium, when ethanol builds up 
to 10%. This result is in accordance with the 
findings of Nwachukwu IN et al. [52] who 

S. cerevisiae, were 
able to tolerate ethanol concentration at 10 and 

y. Aminu et al. [53] reported 
was able to tolerate ethanol 

concentration at 8% v/v. This report was in 
contrast with the findings of Kumar RS et al. [37] 
and Antia EU et al. [47] who also reported that S. 

ethanol at 20% 
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In wine making, sugar (sucrose or glucose) is 
added to the must to increase the alcohol content 
and decrease the acidity of the wine. In this 
process, the sugar is assimilated by the yeast 
into ethanol and carbon dioxide [54]. The 
addition of 18 to 20 w/v of sugar into the 
substrate enhanced the final concentration of 
alcohol by 1% after fermentation [55]. The 
fourteen (14) yeast isolates were also screened 
for their ability to tolerate different concentrations 
of sucrose and glucose (0, 5, 10, 15, 20, 25 and 
30% w/v). Five (5) of the isolates identified as 
Meyerozyma guilliermondii strain 1621, 
Meyerozyma caribbica strain Y-27400 18 S, 
Pichia guilliermondii strain PX-PAT 18 S, 
Kodamaea ohmeri strain ww1-1 18 S and 
Meyerozyma caribbica strain Kw 1S7Y2 18 S 
were able to tolerate sucrose of 20% and 
glucose of 25 w/v. This implies that the yeast 
strains can remain metabolically active in the 
fermentation medium containing up to 20% w/v 
of sucrose and 25% w/v of glucose and utilize 
these sugars and convert them to alcohol during 
fermentation. This result was in accordance to 
the findings of Guimaraes TM et al. [56] who 
reported the ability of Saccharomyces cerevisiae 
to tolerate sucrose and glucose concentrations of 
20 w/v.  
 
Five (5) yeast isolates that had better tolerance 
were identified by genomic studies as non-
Saccharomyces species: M. guilliermondii strain 
1621, M. caribbica strain Y-27400 18 S, P. 
guilliermondii strain PX-PAT 18S, K. ohmeri 
strain ww1-1 18 S and M. caribbica strain Kw 
1S7Y2 18 S. This is in agreement with the 
findings of some authors who reported the 
presence of S. cerevisiae, S. globosus and H. 
uvarum from palm wine [47,52]; S. cerevisiae, S. 
kluvyeri, Debaromyces hansenii from banana 
[57]; S. cerevisiae from pineapple [58]. 
 
Alcohol production is an important parameter to 
test for the efficiency of yeast strains in wine 
production and fruit wines contain 6 to 14% 
alcohol content by volume [59]. Five (5) yeast 
isolates were screened for their ability to produce 
alcohol after 48 hours of sugar (sucrose) 
fermentation. M. guilliermondii strain 1621 
produced 7.6%, P. guilliermondii strain PX-PAT 
18S produced 6.5%, M. caribbica strain Kw 
1S7Y2 18S produced 2.9%, M. caribbica strain 
Y-27400 18 S produced 2.5% while K. ohmeri 
strain ww1-1 18S  produced 0.3% alcohol. 
Meyerozyma guilliermondii strain 1621 and 
Pichia guilliermondii strain PX-PAT 18S 
produced high levels of alcohol of 7.5 and 6.5% 

respectively which makes them suitable for wine 
production. This result is similar to the findings of 
Santoshkumar P et al. [60] who reported that S. 
ellipsoideus produced alcohol level of 8.3%.  
 
The low alcohol production by M. caribbica strain 
Kw 1S7Y2 18S, M. caribbica strain Y-27400 18S 
and K. ohmeri strain ww1-1 18 S yeasts may be 
due to their inability or poor ability to ferment 
sucrose in the absence of oxygen, so the 
organisms are unable to carry out fermentation of 
sugar to alcohol [61]. 
 
The ability of M. guilliermondii strain 1621 and P. 
guilliermondii strain PX-PAT 18 S to tolerate a 
pH range of 3.0-5.0, 10% ethanol. 20% sucrose, 
25% glucose and produce alcohol at 
concentrations of 7.6 and 6.5% makes them 
suitable for wine production from banana and 
pineapple substrates.  
 

5. CONCLUSION 
 
This study was carried out to screen yeasts 
isolated from banana, pineapple and palm wine 
for their efficacy in wine production. Twenty-two 
(22) isolates were obtained and were screened 
for their ability to ferment “must” to wine by 
subjecting them to sugar fermentation test, pH, 
ethanol, sucrose and glucose tolerance tests. 
Five (5) isolates identified as Meyerozyma 
guilliermondii strain 1621, Meyerozyma caribbica 
strain Y-27400 18 S, Pichia guilliermondii strain 
PX-PAT 18 S, Kodamaea ohmeri strain ww1-1 
18S and Meyerozyma caribbica strain Kw 1S7Y2 
18S were able to tolerate pH range of 3.0 to 4.5, 
ethanol concentration of 10%, sucrose 
concentration of 20% and glucose concentration 
of 25% which are important characteristics for 
wine production but when the five (5) isolates 
were subjected to alcohol production test, only 
two (2) isolates (M. guilliermondii strain 1621 and 
P. guilliermondii strain PX-PAT 18 S) were able 
to produce high alcohol content of 7.5 and 6.5%, 
respectively. The inability of M. caribbica strain 
Kw 1S7Y2 18 S, M. caribbica strain Y-27400 18 
S and K. ohmeri strain ww1-1 18 S to produce 
high amount of alcohol may be attributed to 
inability or poor ability to ferment sucrose in the 
presence of oxygen.  
 

This study has shown that Meyerozyma 
guilliermondii strain 1621 and Pichia 
guilliermondii strain PX-PAT 18 S are suitable 
yeast isolates for wine production using banana 
and pineapple as substrates. However, further 
studies could be carried out on measures to 
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increase the alcohol producing ability of M. 
caribbica strain Kw 1S7Y2 18 S, M. caribbica 
strain Y-27400 18 S and K. ohmeri strain ww1-1 
18S yeasts. Their ability to produce high 
concentration of alcohol in mixed culture can also 
be studied. 
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