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ABSTRACT 
 
In this paper, we applied the semi-classical quantization approximation method to solve the radial 
Schrödinger equation with a generalized Pseudoharmonic potential. The four turning points problem 
within the framework of the Wentzel-Kramers-Brillouin (WKB) method was transformed into two 
turning points and subsequently, the energy spectrum was obtained. Some special cases of the 
generalized Pseudoharmonic potential are presented. The WKB approximation approach 
reproduces the exact energy expression obtained with several analytical methods in the literature.  
The values of the energy levels for some selected diatomic molecules (N2, CO, NO, CH) obtained 
numerically are in excellent agreement with those from previous works in the literature. 
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1. INTRODUCTION 
 

The Schrödinger equation (SE) plays a 
significant role in quantum mechanics in that its 
solution can be used to investigate the 
eigenstates of quantum mechanical systems. 
The knowledge of the bound states solutions and 
the wave functions are crucial to understanding 
the electronic state of atoms and molecules. The 
SE has been solved for several potentials of 
interest. Some of these potentials are exactly 
solvable while the non-exactly solvable potentials 
can be approximated by using a numerical 
approach and appropriate analytical methods. 
Some methods that are routinely used to 
estimate the bound states solutions of the SE are 
the Asymptotic iterative method [1-4], Nikiforov-
Uvarov method [5-9], supersymmetric quantum 
mechanics approach [10,11] analytical exact 
iterative method [12], �/�  expansion approach 
[13], Artificial neural network scheme [14], the 
WKB approximation method [15-22] and so on. 
 
In this paper, we considered the radial SE with a 
generalized Pseudoharmonic potential (PHP) 
modeled as  
 

�(�) = (�� + ��)�� +
(�����)

�� + �� + �� ,            (1) 

 
where ��,��  ��,��,  ��  and  ��  are arbitrary 
potential parameters. The PHP is used in 
chemical and molecular physics to study the 
rovibrational states and spectra of diatomic 
molecules including nuclear rotations and 
vibrations

 
[23,24]. Several methods have been 

applied to obtain the eigenenergies and wave 
functions of the radial SE with the PHP. The 
Laplace transform approach was applied to the 
radial SE with a generalized PHP [23,24]. Das 
and Arda [23] presented the special cases of the 
reduced generalized PHP such as the isotropic 
harmonic oscillator, isotropic plus inverse 
quadratic potentials. Rani et al. [25] presented 
the solutions of the radial SE with Kratzer and 
PHP molecular potentials using a series 
expansion approach. They obtained the energy 
states for some diatomic molecules such as CO, 
NO, N2, and CH. Ikhdair and Sever [26] used a 
polynomial method to obtain the energy 
spectrum and wave function for the PHP and 
computed the energy states for some selected 
diatomic molecules such as N2, CO, NO and CH. 
The Nikiforov-Uvarov method was applied to 
obtain the eigensolutions of the PHP [8,27]. 
Oyewumi and Sen [28] solved the radial SE for 

the PHP using the SU (1, 1) spectrum generating 
algebra method. They obtained the energy states, 
expectation values and Heisenberg uncertainty 
product of some diatomic molecules such as CO, 
NO, O2, N2, CH, H2 and ScH. Furthermore, 
Oyewumi et al. [29] studied the effects of 
external magnetic field on the bound states of the 
two-dimensional radial SE with a PHP. Using 
different Larmor frequencies and potential 
parameters, they obtained the energy 
fluctuations both in the presence and absence of 
a magnetic field. Ikhdair and Sever [30] applied 
the eigenfunction ansatz method to solve the 
two-dimensional SE with the PHP and Kratzer 
potentials. The approach used in Ikhdair and 
Sever [30], was also applied to the three-
dimensional SE for the PHP and Mie-type 
potentials [31]. The supersymmetric [32] and 
algebra methods [33] have been used to obtain 
exact bound states solutions of the PHP. The 
dynamical algebra of the PHP was also studied 
[34] in which the ladder operators were 
constructed directly from the wave function. 
Dong [34] using factorization, showed that the 
ladder operators satisfied the commutation 
relation of the dynamical SU (1, 1) group 
generators.  
 
The remaining part of the paper is structured as 
follows. In section two, we present a brief review 
of the WKB approximation approach. Section 
three contains the bound states solutions of the 
radial SE with the PHP given in (1) using the 
WKB approximation approach. Furthermore, 
special cases of the modeled potential are 
discussed in section four. The obtained energy 
expression is applied to some selected diatomic 
molecules (N2, CO, NO, CH). The article is finally 
concluded in section five. 
 

2. THE WKB APPROXIMATION METHOD 
 

The WKB approximation method offers a way of 
finding approximate solutions of linear differential 
equations including the SE. For the SE, it is used 
to investigate tunneling rates through a potential 
barrier and also for the calculation of the bound 
states of potentials of interest [35]. Omugbe [35] 
stated that the WKB method yield accurate 
energy eigenvalues for large values of the radial 
quantum number and also suitable for slow 
varying potential functions. Hruska et al. [36] 
stated that the WKB bound states accuracies 
may vary substantially for the ground and other 
low lying states depending on the potential 
energy function. Furthermore, the leading order 
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WKB approximation scheme does not yield an 
exact eigenvalue of the radial SE [19]. To 
overcome this problem, the centrifugal barrier 
term �(� + 1)ℏ� 2���⁄  in the radial SE has to be 

replaced with the term �� +
�

�
�

�

ℏ� 2���� . This 

modification is known as the Langer correction 
[37]. Sergeenko [21] stated that the Langer 
correction regularizes the WKB wave function at 
the origin and ensures correct asymptotic 
behaviour at large radial quantum numbers. Thus 
at  � = 0 , the orbital centrifugal term is non-
vanishing. This gives the contribution of the 
quantum fluctuation of the angular momentum to 
the ground state energy [19].  
 
The three-dimensional time-independent SE with 
a reduced mass �  and wave-function � (�,�,� )  
is given as  
 

      (2)       
 

Substituting � (�,�,� ) =  
�(�)�(�,� )

�
  into (2), with 

the appropriate separation constant, we obtain 
the radial SE as 
 

 
���(�)

��� +
��

ℏ� �� − ����(�)��(�) = 0.                     (3) 

 
where the effective potential is given as   
 

  ���� (�) = �(�) +
���

�

�
�

�
ℏ�

����                                  (4) 

 
We can recast Eq. (3) as  
 

��− i
�

��
�

�

��(�) =
��

ℏ� �� − �(�) −
���

�

�
�

�
ℏ�

���� � �(�).  (5) 

 
From (5) the classical momentum is given by 
 

 �(�) =  �
��

ℏ� �� − �(�) −
���

�

�
�

�
ℏ�

���� ��

�

�

.         (6) 

 
The standard WKB quantization condition [21,36] 
for two turning point ( �� ,�� ) problem is given as  
 

 ∫ �(�)��
��

��
=  � �� +

�

�
� , �� < � < ��    � =

0,1,2 ⋯                                       (7) 
 
The turning points are gotten from Eq. (6) by 
setting   �(�) = 0 . The semi-classical wave 

function in the leading ℏ approximation has the 
form of 
 

 � ��� (�) =
�

� �(�)
����±

�

ℏ
∫�(�)��

 
�.                (8)  

 

3. SOLUTION OF THE RADIAL SE 
 

To obtain the energy eigenvalues, we substitute 
(6) into (7) with the PHP given in (1) 
 

    (9) 
 

That is  
 

  (10) 
 

Equation (10) is further reduced to 
 

   (11)  
 
With 
 

 � =̅
��

ℏ�
(�� + ��),                                 (12a) 

 

 � =
��

ℏ���— (����� )�

�̅
                   (12b) 

 

and 
 

 � =
��

ℏ�(�����) ����
�

�
�

�

�̅
,                  (12c)  

 
Equation (11) can be written as  
 

� � ∫̅
�

�
√− �� + ��� − � �� =

��

��
� �� +

�

�
�            (13) 

 
We obtained the turning points by equating the 
momentum term to zero 
 

− �� + ��� − � = 0                        (14) 
 
Equation (14) yield four turning points  �� ,��, 
��  and ��. Sergeenko [19,22] stated that the four 
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turning points problem can either be solved in the 
complex plane for  � < 0 or in the physical axis 
( � > 0)  provided that the potential function is 
symmetric. The generalized PHP is a symmetric 
function and using the transformation �� = � 
reduces the four turning points problem to a two 
turning points one [19,22]. 
 

Using the transformation �� = � in (14) implies 
that  
 

− �� + �� − � = 0                             (15) 
 

The roots of (15) are  
 

�� =  
� � � � �� ��

�
         (16a) 

 

�� =  
� �� � �� ��

�
                                 (16b)            

 

Next we substitute the turning points with the 
transformation �� = � into the WKB quantization 
condition in (13) to obtain  
 

 
√�̅

�
 ∫

�

�
√�− �� + �� − ����

��

��
=  � �� +

�

�
�.            (17)                                                                        

 

We can write (17) in a regular form to obtain 
 
√�̅

�
 ∫

�

�
� �(�− ��)(�� − �)���

��

��
=  � �� +

�

�
�.         (18) 

 

Using the standard integral in the literature [36, 
38], we evaluated (18) and obtained  

√�̅

�
�

�

�
(�� + ��) −  √�����=  � +

�

�
                   (19) 

 

Substituting the turning points in (16a) and (16b) 
with the constants �,�  and � in (12a), (12b) and 
(12c) into (19) yields  
 

��� = �
�(�����)ℏ�

�
�� +

�

�
+

�

�
�

��(�����)

ℏ�
+  (2� + 1)�� + �� + ��                                        

                                                                         (20)  
 

Equation (20) is the exact energy spectrum of the 
radial SE with the generalized PHP. In the next 
section we now consider some special cases of 
the generalized PHP given by (1). 
 

4. RESULTS AND DISCUSSION 
 
Case 1. If we set �� = �� = �� = 0 ,  �� =
��

��
� ,  �� =  ����

�, �� = − 2��  in (1), where 

�� = 
�

�
����

�  is the dissociation energy with force 

constant ��  and ��  is an equilibrium constant, 
then we obtain a molecular PHP. The plots of the 
potential energy variation with radial distance for 
(N2, CO, NO and CH) are shown in Fig. 1. 
 

In this case, the exact energy equation for the 
molecular PHP is given as 
 

 ��� =  �
��

��

��
� �ℏ�

�
�� +

�

�
+

�

�
���(����

�)

ℏ�
+  (2� + 1)�� − 2��   

                                                                         (21) 

 

 
 

Fig. 1. Potential energy variation with radial distance for selected diatomic molecules 
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Equation (21) is identical to the eigenvalue 
equations obtained by other analytical methods 
in the literature [23-28,31-33]. Using the 
spectroscopic parameters [27] given in                           
Table 1 with the conversion 

ℏ� =1973.29 eVÅ,1amu=931.494028 Mev/c�, we 
applied (21) to generate the eigenvalues for any 
arbitrary �  and �  quantum numbers of some 
selected diatomic molecules as shown in Table 2 
and Table 3. In comparison, our numerical results 
for the selected molecules N2, CO, NO and CH 
are in good agreement with the results reported 
by Ikhdair and Sever [26]. 

 
Case 2. For  �� =  

��

�� ,    �� =  − ��, �� =

 �� = 0,   �� =  0, �� = 0, 

 
where � represents a quantum dot radius and �� 
is a positive potential parameter, (1) reduces to 
the parabolic or shifted isotropic harmonic 
potential used as a model to study electron 
states in semiconductor quantum dots [39,40]. 
The energy spectrum is given as 

��� = �
���ℏ�

��� �2� + � +
�

�
� − ��.                (22) 

 

For (22) is similar to the respective (4) and (10) 
in the literature [39,40].  
 

Case 3.   �� =
�

�
���, �� ≠ 0,    �� =  �� = �� =

�� = 0 . The generalized PHP reduces to the 
isotropic harmonic oscillator potential plus the 
inverse quadratic potential. The obtained 
eigenenergy equation becomes 
 

��� =
ℏ�

�
�4� + 2 + �

��(��)

ℏ� +  (2� + 1)�� ,           (23) 

 

where � and � are the respective reduced mass 
and angular frequency. Equation (23) is 
equivalent to the respective expression (41), (38) 
and (30) obtained in the literature [23,41,42] 
 

If we set �� = 0  in (23) we obtain the energy 
spectrum of the 3D isotropic harmonic oscillator 
given as 
 

��� = ℏ� �2� + � +
�

�
�                                     (24) 

 
Table 1. Potential parameters for selected diatomic molecules taken from Sever et al. [27] 

 
Molecules �� (in eV) �� (in Å) � (in amu) 

N2 11.938193820 1.0940 7.00335000 
CO 10.845073641 1.1283 6.86058600 
NO 8.043729855 1.1508 7.468441000 
CH 3.947418665 1.1198 0.929931000 

 
Table 2. Bound state energies ��� (in eV) for N2 and CO molecules in comparison with previous 

work [26] 
 

State N2 CO 
� �           Present       [26]

 
          Present      [26] 

0 0 0.1091850 0.1091559 0.1019487 0.1019306 
1 0 0.3274303 0.3273430 0.3057266 0.3056722 
 1 0.3279290 0.3278417 0.3062052 0.3061508 

2 0 0.5456756 0.5455302 0.5095044 0.5094137 
 1 0.5461744 0.5460288 0.5099830 0.5098923 
 2 0.5471718 0.5470260 0.5109402 0.5108495 

4 0 0.9821663 0.9819045 0.9170601 0.9168969 
 1 0.9826650 0.9824031 0.9175387 0.9173755 
 2 0.9836624 0.9834003 0.9184958 0.9183327 
 3 0.9851585 0.9848961 0.9199316 0.9197684 
 4 0.9871530 0.9868903 0.9218457 0.9216825 

5 0 1.2004116 1.2000916 1.1208379 1.1206384 
 1 1.2009103 1.2005902 1.1213165 1.1211170 
 2 1.2019077 1.2015875 1.1222737 1.1220742 
 3 1.2034038 1.2030832 1.1237094 1.1235099 
 4 1.2053983 1.2050774 1.1256235 1.1254240 
 5 1.2078913 1.2075699 1.1280160 1.1258165 
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Table 3. Bound state energies ��� (in eV) for NO and CH molecules in comparison with 
previous work [26] 

 
State NO CH 

   � �           Present       [26]           Present      [26] 
0 0 0.0825103 0.0824883 0.1686793 0.1686344 
1 0 0.2474251 0.2473592 0.5051418 0.5050072 
 1 0.2478477 0.2477817 0.5087256 0.5085903 

2 0 0.4123400 0.4122301 0.8416042 0.8413800 
 1 0.4127626 0.4126526 0.8451881 0.8449631 
 2 0.4136078 0.4134977 0.8523508 0.8521246 

4 0 0.7421697 0.7419718 1.5145292 1.5141255 
 1 0.7425923 0.7423944 1.5181130 1.5177087 
 2 0.7434376 0.7432395 1.5252759 1.5248701 
 3 0.7447053 0.7445070 1.5360079 1.5356002 
 4 0.7463955 0.7461969 1.5502946 1.5498843 

5 0 0.9070845 0.9068427 1.8509917 1.8504983 
 1 0.9075072 0.9072653 1.8545756 1.8540815 
 2 0.9083524 0.9081104 1.8617383 1.8612429 
 3 0.9096202 0.9093779 1.8724703 1.8719729 
 4 0.9113104 0.9110678 1.8867571 1.8862571 
 5 0.9134229 0.9131799 1.9045795 1.9040761 

 

Case 4  �� =
��

��
� ,  �� =  ����

�,   �� = − 2��  , 

 �� =
�

�
��

� ,   �� = 0, �� = ���.  

 

With � = �� +
�

�
� in (3), the radial SE reduces to 

a two-dimensional problem. The constants 
�� and    ��  have their usual meanings while  �  
and ��  are the respective eigenvalues of the 
angular momentum and Larmor frequency [29]. 
The eigenvalue equation in this case using (20) 
is 
 

��� = �
���

��
���

��
� �ℏ�

�
�(2� + 1) + �

�������
��

ℏ�
+  ���  + ��� − 2��                                                    

                                                                        (25) 
 

Equation (25) gives the exact analytical energy 
expression of the two-dimensional radial SE with 
the PHP in the presence of magnetic field [29].  
Also if we set �� = 0, we will obtain similar result 
of the energy eigenvalue equation given in the 
literature [30,42]. 
 

��� = �
�

���

��
� �ℏ�

�
�(2� + 1) + ���(����

�)

ℏ�
+  ��� − 2��   

                                                            (26) 
 

5. CONCLUSION 
 

The WKB approximation scheme offers a direct 
and simple way of obtaining the solutions of the 
bound states of the wave equation if the 
momentum of a quantum system is known. We 

applied this scheme to the radial SE and 
obtained the analytical energy expression of the 
modeled generalized PHP. This potential with 
other molecular potentials such as the Morse, 
Kratzer-Fues, Mie-type potentials, etc is used as 
a model in chemical and molecular physics for 
studying the rovibrational states and spectra 
states of diatomic molecules. Furthermore the 
potential can be applied to study bound state 
energies of quarkonia and quantum dots systems 
[25,39]. The WKB approximation method 
reproduces equivalent energy eigenvalues 
equations obtained with other analytical methods 
[23-28,31-33]. The energy eigenvalues of 
selected diatomic molecules such as N2, CO, NO, 
and CH, obtained numerically are in excellent 
agreement with the results in previous analytical 
works [23-28,32]. 
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