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This paper examines a general recurrence relation by the use of fractional reduced differential 
transform and then a scheme (methodology) on how to find closed solutions of one dimensional time 
fractional diffusion equations with initial conditions in the form of infinite fractional power series and in 
terms of Mittag-Leffler function in one parameter as well as their exact solutions by the use of fractional 
reduced differential transform method. The new general recurrence relation and the methodology of the 
fractional reduced differential transform method were successfully developed. The obtained new 
general recurrence relation helps us to solve time-fractional diffusion equations with initial conditions 
and various external forces by using fractional reduced differential transform method. To see its 
effectiveness and applicability, five test examples were presented. The results show that the general 
recurrence relation works successfully in solving time-fractional diffusion equations in a direct way 
without using linearization, transformations, perturbation, discretization or restrictive assumptions by 
using fractional reduced differential transform method. 
 
Key words: Time fractional diffusion equations with initial conditions, Caputo fractional derivatives, Mittag-
Leffler function, Fractional reduced differential transform method (FRDTM). 

 
 
INTRODUCTION 
 
The beginning of fractional calculus is considered to be 
the L'Hopital’s letter that raised the question: "What does 
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mean if 
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n ?" to Leibniz in 1695, where the 

notation for  differentiation  of  non-integer  order  
2

1   was  

discussed (Diethelm, 2010; Hilfer, 2000; Lazarevic et al., 
2014; Millar and Ross, 1993; Ortigueira, 2011; Kumar and 
Saxena, 2016). Since then, many famous 
mathematicians such as Laplace, Fourier, Abel, Liouville, 
Riemann, Grunwald, Letnkov, Levy, Marchaud, Erdelyi 
and Reisz have worked much on this question and other 
related questions up to the middle of the 19

th
 century, and 

provided  important  contributions  to  those  creating   the
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field which is known today as fractional calculus (Oldham 
and Spanier, 1974). 

Fractional calculus theory is a mathematical analysis 
tool to the study of integrals and derivatives of arbitrary 
order, which unify and generalize the notations of integer-
order differentiation and n fold integration (El-Ajou et 

al., 2013; Millar and Ross, 1993; Oldham and Spanier, 
1974; Podlubny, 1999). Although fractional calculus is 
almost as old as the classical calculus, it was only in 
recent few decades that its theory and applications have 
rapidly developed. It was Ross who organized the first 
international conference on fractional calculus and its 
applications at the University of new Haven in June 1974, 
and edited the proceedings (Ross, 1975). Oldham and 
Spanier (1974) published the first monograph on 
fractional calculus in 1974. Thereafter, because of the 
fact that fractional derivatives and integrals are non-local 
operators and then this property make them a powerful 
instrument for the description of memory and hereditary 
properties of different substances (Podlubny, 1999); 
theory and applications of fractional calculus have 
attracted much interest and become a pulsating research 
area. 

Due to this, fractional calculus has got many important 
applications in numerous diverse and widespread areas 
of different fields of science, engineering and finance. For 
instance, in a book written by Shanantu Das (2011), it 
was discussed that fractional calculus is applicable to 
problems in: fractance circuits, electrochemistry, 
capacitor theory, feedback control system, vibration 
damping system, diffusion process, electrical science, 
and material creep. Fractional Calculus is applicable to 
problems in fitting experimental data, electric circuits, 
electro-analytical chemistry, fractional multi-poles, 
neurons and biology (Podlubny, 1999). It is also 
applicable to problems in polymer science, polymer 
physics, biophysics, rheology, and thermodynamics 
(Hilfer, 2000). In addition, it is applicable to problems in: 
electrochemical process (Millar and Ross, 1993; Oldham 
and Spanier, 1974; Podlubny, 1999), control theory 
(David et al., 2011; Podlubny, 1999), physics (Sabatier et 
al., 2007), science and engineering (Kumar and Saxena, 
2016), transport in semi-infinite medium (Oldham and 
Spanier, 1974), signal processing (Sheng et al., 2011), 
self-similar protein dynamics (Glockle and 
Nonnenmacher, 1995), food science (Rahimy, 2010), 
food gums (David and Katayama, 2013), fractional 
dynamics (Tarsov, 2011; Zaslavsky, 2005), quantum 
dynamics (Iomin, 2009), modeling cardiac tissue 
electrode interface (Magin, 2008), food engineering and 
econophysics  (David et al., 2011), Hamiltonian chaotic 
systems (Hilfer, 2000; Zaslavsky, 2005), complex 
dynamics in biological tissues (Margin, 2010), 
viscoelasticity (Dalir and Bashour, 2010; Mainardi, 2010; 
Podlubny, 1999; Rahimy, 2010; Sabatier et al., 2007), 
control science (Shanantu Das, 2011; Sabatier et al., 
2007), quantum mechanics (Herrmann,  2011),  modeling  
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oscillation systems (Gomez-Aguilar et al., 2015). Some of 
these mentioned applications were tried to be touched as 
follows. 

In the area of science and engineering, many 
applications of fractional calculus have been developed in 
the last two decades. For instance, fractional calculus 
was used in image processing, mortgage, biosciences, 
robotics, motion of fractional oscillator and analytical 
science (Kumar and Saxena, 2016). It was also used to 
generalize traditional classical inventory model to 
fractional inventory model (Das and Roy, 2014). 

In the area of electrochemical process, for example 
half-order derivatives and integrals proved to be more 
useful for the formulation of certain electrochemical 
problems than the classical models (Millar and Ross, 
1993; Oldham and Spanier, 1974; Podlubny, 1999). 
In the area of quantum dynamics, fractional calculus to 
quantum process was presented. Particularly, the 
quantum dynamics was considered in the framework of 
the fractional time Schrodinger equation, which differs 
from the standard Schrodinger equation by fractional time 

derivative: 




tt 



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
and it was shown that for 
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1
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, 
the fractional Schrodinger equation is isopectral to a 
comb model (Iomin, 2009). An analytical expression for 
the Green’s functions of the systems was obtained and 
semi-classical limit was discussed (Iomin, 2009). 

In the area of filled polymers, the fractional calculus 
approach to describe dynamic processes in disordered or 
complex systems such as relaxation or dielectric behavior 
in polymers or photo bleaching recovery in biological 
membranes has proved to be an extraordinarily 
successful tool (Metzler et al., 1995). Fractional 
relaxation was applied to filled polymer networks and the 
dependence of the decisive occurring parameters on the 
filler content was investigated, and as a result, the 
dynamics of such complex systems may be well–
described by Metzler, Schick, Kilian, and Nonnenmacher 
fractional model where by the parameters agree with 
known phenomenological models (Metzler et al., 1995). 
In the area of viscoelasticity, the use of fractional calculus 
for modeling viscoelastic materials is well known.  For 
viscoelastic materials the stress-strain constitutive 
relation can be more accurately described by introducing 
the fractional derivative (Carpinteri et al., 2014; Dalir and 
Bashour, 2010; Duan, 2016; Koeller, 1984; Mainardi, 
2010; Podlubny, 1999). 

Fractional derivatives, which are the one part of 
fractional calculus are used to name derivatives of an 
arbitrary order (Podlubny, 1999). Recently, fractional 
derivatives have been successfully applied to describe 
(model) real world problems. 

In the area of physics, fractional kinetic equations of the 
diffusion, diffusion-advection and Focker-Plank type are 
presented as a useful approach for the description of 
transport   dynamics    in   complex   systems    that    are  
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governed by anomalous diffusion and non-exponential 
relaxation patterns (Metzler and Klafter, 2000). Metzler 
and Klafter (2000) derived these fractional equations 
asymptotically from basic random walk models, and from 
a generalized master equation. They presented an 
integral transformation between the Brownian solution 
and its fractional counterparts. Moreover, a phase space 
model was presented to explain the genesis of fractional 
dynamics in trapping systems. These issues make the 
fractional equation approach powerful. Their work 
demonstrates that the fractional equations have come of 
age as a complementary tool in the description of 
anomalous transport processes. da Silva et al. (2009) 
also discussed that solutions for a system governed by a 
non-Markovian Fokker Planck equation and subjected to 
a Comb structure were investigated by using the Green 
function approach. This structure consists of the axis of 
structure as the backbone and fingers which are attached 
perpendicular to the axis, and for this system, an arbitrary 
initial condition in the presence of time dependent 
diffusion coefficients and spatial fractional derivatives 
was considered and the connection to the anomalous 
diffusion was analyzed (da Silva et al., 2009). 

In addition to these, the following are also other 
applications of fractional derivatives. Fractional 
derivatives in the sense of Caputo fractional derivatives 
were used in generalizing some theorems of classical 
power series to fractional power series (El-Ajou et al., 
2013). Fractional derivative in the Caputo sense was 
used to introduce a general form of the generalized 
Taylor’s formula by generalizing some theorems related 
to the classical power series into fractional power series 
sense (El-Ajou et al., 2015a). A definition of Caputo 
fractional derivative proposed on a finite interval in the 
fractional Sobolev spaces was investigated from the 
operator theoretic viewpoint (Gorenflo et al., 2015). 
Particularly, some important equivalence of the norms 
related to the fractional integration and differentiation 
operators in the fractional Sobolev spaces are given and 
then applied for proving the maximal regularity of the 
solutions to some initial-boundary-value problems for the 
time-fractional diffusion equation with the Caputo 
derivative in the fractional Sobolev spaces (Gorenflo et 
al., 2015). With the help of Caputo time-fractional 
derivative and Riesz space-fractional derivative, the  -

fractional diffusion equation, which is a special model for 
the two-dimensional anomalous diffusion is deduced from 
the basic continuous time random walk equations in 
terms of a time- and space- fractional partial differential 
equation with the Caputo time-fractional derivative of 

order 
2


 and the Riesz space-fractional derivative of 

order  (Luchko, 2016). Fractional derivatives were also 

used to describe HIV infection of TCD 4 with therapy 

effect (Zeid et al., 2016). 
In the area of modeling oscillating systems, Caputo and 

 
 
 
 
Caputo-Fabrizio fractional derivatives were used to 
present fractional differential equations which are 
generalization of the classical mass-spring-damper 
model, and these fractional differential equations are 
used to describe variety of systems which had not been 
addressed by the classical mass-spring-damper model 
due to the limitations of the classical calculus (Gomez-
Aguilar et al., 2015). 

Podlubny (1999) stated that fractional differential 
equations are equations which contain fractional 
derivatives. These equations can be divided into two 
categories such as fractional ordinary differential 
equations and fractional partial differential equations. 
Fractional partial differential equations (FPDEs) are a 
type of differential equations (DEs) involving multivariable 
function and their fractional or fractional-integer partial 
derivatives with respect to those variables (Abu Arqub et 
al., 2015). There are different examples of fractional 
partial differential equations. Some of them are: the time-
fractional Boussinesq-type equation, the time-fractional 

)1 ,1 ,2(B -type equation and the time-fractional Klein-

Gordon-type equation stated in Abu Arqub et al. (2015), 
and time fractional diffusion equation stated in Kumar et 
al. (2017),  Cetinkaya and Kiymaz (2013), Kumar et al. 
(2012) and so on. 

Recently, fractional differential equations have been 
successfully applied to describe (model) real world 
problems. For instance, the generalized wave equation, 
which contains fractional derivatives with respect to time 
in addition to the second-order temporal and spatial 
derivatives, was used to model the viscoelastic case and 
the pure elastic case in a single equation (Wang, 2016). 
The time fractional Boussinesq-type equations can be 
used to describe small oscillations of nonlinear beams, 
long waves over an even slope, shallow-water waves, 
shallow fluid layers, and nonlinear atomic chains; the 
time-fractional )1 ,1 ,2(B -type equations can be used to 

study optical solitons in the two cycle regime, density 
waves in traffic flow of two kinds of vehicles, and surface 
acoustic soliton in a system supporting love waves; the 
time fractional Klein-Gordon-type equations can be 
applied to study complex group velocity and energy 
transport in absorbing media, short waves in nonlinear 
dispersive models, propagation of dislocations within 
crystals (Abu Arqub et al., 2015). According to Abu Arqub 
(2017), the time-fractional heat equation, which is derived 
from Fourier’s law and conservation of energy, is used in 
describing the distribution of heat or variation in 
temperature in a given region over time; the time-
fractional cable equation, which is derived from the cable 
equation for electro diffusion in smooth homogeneous 
cylinders and occurred due to anomalous diffusion, is 
used in modeling the ion electro diffusion at the neurons; 
the time-fractional modified anomalous sub diffusion 
equation, which is derived from the neural cell adhesion 
molecules is used for describing processes that become 
less anomalous  as time  progresses by the inclusion of a  



 
 
 
 
second fractional time derivative acting on the diffusion 
term; the time fractional reaction sub diffusion equation is 
used to describe many different areas of chemical 
reactions, such as exciton quenching, recombination of 
charge carriers or radiation defects in solids, and 
predator pray relationships in ecology. The time-fractional 
Fokker–Planck equation is used to describe many 
phenomena in plasma and polymer physics, population 
dynamics, neurosciences, nonlinear hydrodynamics, 
pattern formation, and psychology. The time-fractional 
Fisher’s equation is used to describe the population 
growth models, whilst, the time fractional Newell–
Whitehead equation is used to describe fluid dynamics 
model and capillary–gravity waves. The fractional 
differential equations, generalization of the classical 
mass-spring-damper models are useful in understanding 
the behavior of dynamical complex systems, mechanical 
vibrations, control theory, relaxation phenomena, 
viscoelasticity, viscoelastic damping and oscillatory 
processes (Gomez-Aguilar et al., 2015). The space-time 
fractional diffusion equations on two time intervals was 
used in finance to model option pricing and the model 
was shown to be useful for option pricing during some 
temporally abnormal periods (Korbel and Luchko, 2016). 

The  -fractional diffusion equation for 20   

describes the so called Levy flights that correspond to the 
continuous time random walk model, where both the 
mean waiting time and the jump length variance of the 
diffusing Particles are divergent (Luchko, 2016). Time 
fractional diffusion equations in the Caputo sense with 
initial conditions are used to model cancer tumor (Iyiola 
and Zaman, 2014). 

Nonlinear diffusion equations play a great role to 
describe the density dynamics in a material undergoing 
diffusion in a dynamic system which includes different 
branches of science and technology. The classical and 
simplest diffusion equation which is used to model the 
free motion of the particle is: 
 

           (1), 
 

where ),( txu  is the probability density function of finding 

a particle at the point x  in time instant t , )(xF is the 

external force, and A is a positive constant which 
depends on the temperature, the friction coefficient, the 
universal gas constant and  the Avogadro number 
(Kumar et al., 2017). 

Recently, the fractional differential equations have 
gained much attention of researchers due to the fact that 
they generate fractional Brownian motion which is 
generalization of Brownian motion (Podlubny, 1999). Das 
et al. (2011) stated that time fractional diffusion equation, 
which is one of the fractional differential equations, is 
obtained from the classical diffusion equation in 
mathematical  physics  by  replacing  the  first  order  time 
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derivative by a fractional derivative of order  where

10  . Time fractional diffusion equation is an 

evolution equation that generates the fractional Brownian 
motion (FBM) which is a generalization of Brownian 
motion (Das et al., 2011; Podlubny, 1999). Due to the fact 
that fractional derivative provides an excellent tool for 
describing memory and hereditary properties for various 
materials and processes (Caputo and Mainardi, 1971), 
the time fractional diffusion equation (Kumar et al., 2017; 
Cetinkaya and Kiymaz, 2013; Das, 2009; Kumar et al., 
2012 ) of the form 
 

 
 
which is generalization of Equation 1, was considered in 

this study. Here 











  ),(),( 1 txu

t
JtxuD tt


. 

The fractional derivative 

tD is considered in the Caputo 

sense which has the main advantage that the initial 
conditions for fractional differential equations with Caputo 
derivative take on the same form as for integer order 
differential equations (Caputo, 1967). Due to this, 
considerable works on fractional diffusion equations have 
already been done by different authors to obtain exact, 
approximate analytic and pure numerical solutions by 
using various developed methods. 

Recently, Adomian Decomposition Method by Saha 
Ray and Bera in 2006 (as cited in Cetinkaya and Kiymaz, 
2013; Kumar et al., 2012; Das, 2009), variational iteration 
method (Das, 2009), Homotopy Analysis Method (Das et 
al., 2011), Laplace Transform Method (Kumar et al., 
2012), Generalized Differential Transform Method 
(Cetinkaya and Kiymaz, 2013) and Residue fractional 
power series method (Kumar et al., 2017), which have 
their own inbuilt deficiencies: the complexity and difficulty 
of solution procedure for calculation of Adomain 
polynomials, the restrictions on the order of the 
nonlinearity term or even the form of the boundary 
conditions and uncontrollability of non-zero end 
conditions, unrestricted freedom to choose base function 
to approximate the linear and nonlinear problems, and 
complex computations respectively, were used to obtain 
solutions of time fractional diffusion equations with initial 
conditions.  

To overcome these so called deficiencies, the reduced 
differential transform method (Keskin and Outranc, 2009, 
2010) in its fractional form was preferably taken in this 
paper to solve time fractional diffusion equations with 
initial conditions of the form (2a) given that

 
(2b) 

analytically with the help of the general recurrence 
relation (that is, Equation (24a) with (24b) which was 
developed in this paper. 

The fractional reduced differential transform technique 
is  an iterative procedure for  obtaining  series  solution of  
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differential equations and it reduces the size of 
computational work and easily applicable to many 
physical problems (Mohyud-Din and Sohail, 2012a, b). 
Recently, fractional reduced differential transform method 
was used to solve different time fractional partial 
differential equations. For example, fractional reduced 
differential transform method was used by Jafari et al. 
(2016) to solve partial differential equations within local 
fractional derivative operators. Fractional reduced 
differential transform method was used by Singh et al. 
(2016) to solve time-Fractional order Black-Scholes 
option pricing equation. Fractional reduced differential 
transform method was also used in solving two and three 
dimensional time fractional telegraphic equations 
(Srivastava et al., 2014), time fractional nonlinear 
evolution equations (Abdou and Yildirim, 2012) and 
Caputo time fractional order hyperbolic telegraph 
equation (Sirvastava et al., 2013). 

In this paper, the author has examined a general 
recurrence relation by the use of fractional reduced 
differential transform and then a scheme to find closed 
solutions of one dimensional time fractional diffusion 
equations with initial conditions in the form of infinite 
fractional power series and in terms of Mittag-Leffler 
function in one parameter as well as their exact solutions 
by the use of fractional reduced differential transform 
method. The results of the listed examples showed that 
the general recurrence relation works successfully in 
solving time-fractional diffusion equations with initial 
conditions in a direct way without using linearization, 
transformation, perturbation, discretization or restrictive 
assumptions by using Fractional Reduced Differential 
Transform method.  

This paper is organized as follows: First is the 
methodology, followed by results and discussion 
involving: some definitions, theorems and notations of 
fractional calculus theory, the results which are the new 
recurrence relation and methodology on how to apply 
fractional reduced differential transform method, 
application models and discussion of application of the 
results obtained were presented. Finally, conclusions are 
presented. 
 
 
METHODOLOGY 
 
In this paper, it was designed to set and discuss the theoretical 
background (foundation) of the study step by step to come to the 
objective of the study. Next, it was designed to consider time 
fractional differential equations under initial conditions, specifically, 
time fractional diffusion equations with initial conditions of the form 
(2a) given that (2b),

 
and then use analytical design to solve them 

analytically by using fractional reduced differential transform 
method with the help of a new general recurrence relation which 
can be obtained from fractional reduced transform by following the 
next five procedures sequentially. First, it was designed to discuss 
some definitions (specially, the definition of Caputo fractional 
derivative), properties, lemma and theorems of fractional calculus, 
and definitions and some theorems of fractional reduced differential 
transform, which were used in the study. Secondly, it was designed  

 
 
 
 
to develop a new recurrence relation and then methodology of 
fractional reduced differential transform method for (2a) given that 
(2b). Thirdly, it was designed to obtain closed solutions of (2a) 
given that (2b) in the form of infinite fractional power series by 
fractional reduced differential transform method with the help of the 
recurrence relation of (2a) given that (2b). Fourthly, it was designed 
to determine closed solutions of (2a) given that (2b) in terms of 
Mittag-Leffler functions in one parameter from these infinite 
fractional power series closed form solutions of (2a) given that (2b). 
Lastly, it was designed to obtain exact solutions from closed 
solutions in terms of Mittag-Leffler functions in one parameter of 

(2a) given that (2b) for the special case 1 . 

 
 
RESULTS AND DISCUSSION 
 
Preliminaries 
 
Fractional calculus 
 
There are several definitions of both the fractional 

integration of order 0  and the fractional derivative of 

order 0 , not automatically equivalent to each other 

(Millar and Ross, 1993). The two most used definitions, 
Riemann-Liouville and Caputo definitions and some 
properties of fractional calculus are revisited as follow to 
use them in this paper (Kilbas et al., 2006; Mainardi, 
2010; Podlubny, 1999; Millar and Ross, 1993). 
 

Definition 1: A real valued function 0, ),,(  tIRxtxu , 

is said to be in the space IRC   , ,
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real number q  such that ),()( 1 txutxu q  , where

)),0[(),(1  IRCtxu and it is said to be in the space 
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Definition 2: The Riemann-Liouville fractional integral 

operator of order 0  of a function 
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is defined as 
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The Riemann Liouville derivative has the disadvantage 
that it does not allow utilization of initial and boundary 
conditions involving integer order derivatives when trying 
to model real world problems with fractional differential 
equations. To beat this disadvantage of Riemann 
Liouville derivative (Millar and Ross, 1993; Podlubny, 
1999), Caputo proposed a modified fractional 

differentiation operator 

aD  (Caputo and Mainardi, 1971) 

to illustrate the theory of viscoelasticity as follows: 
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This Caputo fractional derivative allows the utilization of 
initial and boundary conditions involving integer order 
derivatives, which have clear physical interpretations of 
the real situations. 
 

Definition 3: For the smallest integer that exceeds  ,
 

the Caputo time fractional derivative order 0  of a 

function ),( txu  is defined as: 

 

 
 

Theorem 1: If
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The reader is kindly requested to go through (Kilbas et 
al., 2006; Mainardi, 2010) in order to know more details 
about the mathematical properties of fractional 
derivatives and fractional integrals, including their types 
and history, their motivation for use, their characteristics, 
and their applications. 
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According to Omez-Aguilar et al. (2014) and the 
reference therein, the Caputo fractional derivative 

operator 
D satisfies the linearity property: 

 

 
 
Definition 4: According to Millar and Ross (1993), 
Podlubny (1999) and Sontakke and Shaikh (2015), the 
Mittag-Leffler function, which is a one parameter 
generalization of exponential function, is defined as 
 

 
 
Definition 5: According to Neog (2015), a Taylor series 
of a polynomial of degree n is defined as follows: 
 

 
 

Theorem 2: According to Neog (2015), if the function has 

 1n
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is the 

error between and the polynomial function then the 

Taylor series expanded about c  converges to )(xf . 

Thus, 
 

 
 

Definition 6: According to El-Ajou et al. (2013), a power 
series expansion of the form: 
 

 
 

is called fractional power series about 0  t , where t is a 

variable and mc is called coefficients of the series. 

 

Theorem 3: According to El-Ajou et al. (2013), suppose 

that )(tf
 
has fractional power series representation at

0tt  , then 
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then the coefficients

 
nc of Equation (10)
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formula 
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where 
 DDDDDn  .. . .  (m-times) and R is 

the radius of convergence. 
 

Remark 1: By substituting the form of nc
 
of Equation 

(11), we can notice that the fractional power series 

expansion of
 )(tf  about

 0tt 
 
must be of the form 

 

 
 
which is generalized Taylor’s series formula. To be 

specific, if one set 1 , then the classical Taylor’s 

series formula 
 

 
 
The following definition and the theorem with its proof 
were given in El-Ajou et al. (2015b). 
 

Definition 7: If 0 ,10 tand tINmmm   a 

fractional power series of the form 
 

 
 

is called a multiple fractional power series about
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where t is a variable and )(xfm are function of x  called 

the coefficients of the series. 
 

Theorem 4: Suppose that ),( txu has a multiple 

fractional power series representation at 0tt   of the form 
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Remark 2: By substituting the form of )(xfn of Equation 

(16), we can notice that the multiple fractional power 

series expansion of
 ),( txu  about

 0tt 
 
must be of the 

form 
 

 
 
which is generalized Taylor’s series formula. To be 

specific, if one set 1 , then the classical Taylor’s 

series formula 
 

 
 
 
Fractional reduced differential transform 
 
Here, the basic definitions of fractional reduced 
differential transformations were introduced.  

Consider a function of two variables, ),( txu such that 

)()(),( tgxqtxu  , where )(xq
 
and )(tg are analytic 

and k times continuously differentiable with respect to 

variable x  and )(tg  is analytic and k  times continuously 

differentiable with
th derivatives with respect to time t

where 0 . Then based on Equations (8 and 12), and 

the properties of one dimensional differential 
transformation (Hilfer, 2000; Keskin and Outranc, 2009), 

the function ),( txu can be represented as 

 

 
 

where )(xU k is the t-dimensional spectrum function of
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In this paper,  FRDT and 
1FRDT  denote the 

fractional reduced differential transform operator and 
inverse fractional reduced differential transform operator 
respectively. 

So, based on Equations (16 and 19) and (17 and 19), 
the definition of fractional reduced differential transform 

(FRDT) of a function ),( txu  denoted by
 

)(xU k and
 
the 

definition of the differential inverse fractional reduced 

transform of )(xU k  denoted by ),( txu were given 

respectively as follows. 

Definition 8: If the function ),( txu  such that 

)()(),( tgxqtxu  is analytic and k-times 

continuously differentiable with respect to space variable 

and also k times continuously differentiable with
th

derivative with respect to time t in the domain of interest, 

then the fractional reduced differential transform (FRDT) 

of a function ),( txu (the t dimensional spectrum 

function of ),( txu ) denoted by )(xUK  is given by: 

 

 
 

where  such that 10   is a parameter describing 

the order of the time fractional derivative in Caputo 
sense. 
 
Definition 9: The differential inverse fractional reduced 

transform of )(xU k  denoted by ),( txu  is given by: 

 

 
 

where   such that 10   is a parameter describing 

the order of the time fractional derivative in Caputo 
sense. 
Combining Equations (20 and 21) one can obtain: 
 

 
 
which is the differential inverse fractional reduced 
transform (Equation (20)). 
Equation (22) confirms that the concept of the fractional 
reduced differential transform is derived from the 

fractional power series expansion of the function ),( txu . 

 

Remark 3: In real application, the function ),( txu
 
is 

represented by a finite series of Equation (21), which can 
be expressed as: 

 
 
and Equation (21) implies that
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negligibly small. Usually, 

the values of n  is decided by convergence of the series 

coefficients. 
Even though there are different theorems which can be 
deduced from Equations (20) and (21), Theorems 5 to 8 
(Keskin and Outranc, 2009, 2010) and Theorem 9 
(Mohyud-Din and Sohail, 2012a, b) are the ones which 
were revisited to use in this study. 
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Main results 
 
Here, a new general recurrence relation, and 
methodology of fractional reduced differential transform 
method were developed and introduced for determining 
closed solutions of time fractional diffusion equations of 
the form (2a) given that (2b) in infinite fractional power 
series form, in terms of Mittag-Leffler functions in one 
parameter and exact form. 
 

 
 
 
 
Solution of the general problem 
 
Here, as a result of using Equations (20)

 
and (21) and 

Theorems 5 to 9, the new general recurrence relation for 
fractional reduced differential transform of (2a) given that 
(2b) was developed. With the help of it, a methodology of 
fractional reduced differential transforms method, which 
is used to obtain closed solutions of (2a) given that (2b) 
in infinite fractional power series and in terms of Mittag-
Leffler function in one parameter as well as their exact 
solutions, was developed in analytic form. 
 
 
The general recurrence relation: 
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By Equation (5), 
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Since multiplication is distributive over subtraction, 
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By Theorems 5 to 9, 
 

    210 ,0 0, x,10 ,)()()()()()(
)1(

)1(
2

2

1 ,, , ktxU
x

xFxUxF
x

xU
x

xU
k

k
kkkk 











































 



  

Thus, the FRDT of     0,10 ,,()(
2

2















ttxuxF

x
u

xt

u






is given by:

  

 
 

Again, by taking FRDT  of both sides of (2b) and then 
using Equation (20). 
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Since initial condition (at 00 t ) is where the reduced 

differential transform starts, that is, ,0k

  )(0)()0,( 0 xf)u(x,xUxuFRDT  .

 Therefore, the FRDT of (2b) is given by 
 

 
 
Therefore, the FRDT of Equation (2a) given that (2b) are 
(24a) and (24b) respectively.

 
Hence, this completes the proof of the theorem.
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Methodology of fractional reduced differential 
transform method: The overall steps, which were 
introduced to be followed by anyone accordingly to obtain 
closed form solutions of (2a) given that (2b) in the form of 
fractional power series, in terms of Mittag-Leffler function 
of one parameter and exact form by fractional reduced 
differential transform method with the help of Theorem 5 
are steps 1 to 3, 1 to 4 and 1 to 5, respectively. 
 
Step 1: Using Theorem 5, find the general recurrence 
relation of problems of the form (2a) given that (2b) and 

then substitute )(0 xU value in the obtained general 

recurrence relation successively, to find the other )(xU k

values: 
 

nkxUxUxUxU n  ,,3 ,2 ,1 ),( , ),( ),( ),( 321  
.
 

 

Step 2: Find the
thn  order approximate solution of (2a) 

given that (2b), that is, ),(~ txun by taking the 

differential inverse fractional reduced transform of

 n

k xU
0

)( , which is given by 
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which is closed solutions of (2a) given that (2b) in the 
form of infinite fractional power series.

 
 
Step 4: By using Equation (6) in 

0 ,10,)(),(
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
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xtxUtxu k
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of Step 3, we can 

obtain closed solutions of (2a) given that (2b) in terms of 
Mittag-Leffler function in one parameter. 
 
Step 5: By taking left hand side limit of result of Step 4 as 

  approaches 1 from left, that is, 
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, the exact 

solutions of (2a) given that (2b), ),( txuexact can be 

obtained. 
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Applications 
 
Here, to validate (show) the simplicity, effectiveness and 
applicability of the newly proposed recurrence relation 
(Theorem 5) in the methodology of the fractional reduced 
differential transform method (FRDTM), five application 
examples were considered and solved as follow. 
 

Example 1: Taking 1 ,)(  xxF
 
in (2a) and 

choosing 1)( xf in (2b) (Kumar et al., 2012, 2017; 

Cetinkaya and Kiymaz, 2013), consider the initial value 
problem: 
 

 
 

Since 1 ,)(  xxF and 1)( xf , by Theorem 5, the 

FRDT of Equation (25a) and (25b) are: 
 

 

 

By substituting 1 for )(0 xU from Equation (26b) in (26a) 

recursively, we find the following )(xU k values:  
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by straight forward iteration calculation. 
 

For 0 ,0 ,10   , 
)1(

1
)( ;0 1 


 txxUk 


 

 

For 0 ,0 ,10   , 
)12(

1
)( ;1 2 


 txxUk 


 

 

For 0 ,0 ,10   , 
)13(

1
)( ;2 3 


 txxUk 


 

 
Continuing with this process, we obtain that: 
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Then the inverse FRDT of   n
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thn order 

approximate solution of Equation (25a), ),(~ txun  
which is 

given by: 
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Table 1. Absolute error of approximating the solution of
 
Equation

 
(25a) given that Equation (25b) to

 
5th

 order
 

using FRDT method. 
 

Variables Absolute error,   ),(~),( 55 txutxuuE exact   

t  x  25.0  50.0  75.0  1  

25.0  25.0  852591.4  827357.0  530995.0  
710515836.3   

25.0  50.0  852591.4  827357.0  530995.0  

530995.0  

710515836.3   

25.0  75.0  852591.4  827357.0  
710515836.3   

25.0  00.1  852591.4  827357.0  530995.0  
710515836.3   

50.0  25.0  317463.6  770632.1  449889.0  
510335403.2   

50.0  50.0  317463.6  770632.1  449889.0  
510335403.2   

50.0  75.0  317463.6  770632.1  449889.0  
510335403.2   

50.0  00.1  317463.6  770632.1  449889.0  
510335403.2   

75.0  25.0  356235.7  253027.2  544978.0  000276.0  

75.0  50.0  356235.7  253027.2  544978.0  000276.0  

75.0  75.0  356235.7  253027.2  544978.0  000276.0  

75.0  00.1  356235.7  253027.2  544978.0  000276.0  

00.1  25.0  108369.8  660339.2  591061.0  001615.0  

00.1  50.0  108369.8  660339.2  591061.0  001615.0  

00.1  75.0  108369.8  660339.2  591061.0  001615.0  

00.1  00.1  108369.8  660339.2  591061.0  001615.0  

 
 
 

By letting INn to  or taking limit of both sides of 

Equation (27) as  INn , the closed solution of 

Equation (25a) in the form of infinite fractional power 

series ),( txu  is: 
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 3.26                                                                     0 ,0 ,10,
)1(

),(
0









tx
k

t
txu

k

k






 

(28) 

   3.27                                                                               0 ,0 ,10 ,),(  txtEtxu 
  (29) 

 3.28                                                                                      0 ,0 1, ,  txe(x,t)u t

exact 
 

(30) 

 

 
























 3.29b                                                                                          )0,( condition  initial  Subject to

3.29a                                                                                  10 0, t,0 , )(
2

2

xxu

xxu
xx

u

t

u






 

(31b) 

(31a) 



Kenea         25 
 
 
 

Table 2. Absolute error of approximating the solution of Equation
 
(25a) given that Equation (25b) to

 
6th

 order
 
using FRDT method. 

 

Variables Absolute error,   ),(~),( 66 txutxuuE exact   

t  x  25.0  50.0  75.0  1  

25.0  25.0  915278.4  194657.1  047116.0  
810249937.1   

25.0  50.0  915278.4  194657.1  047116.0  
810249937.1   

25.0  75.0  915278.4  194657.1  047116.0  
810249937.1   

25.0  00.1  915278.4  194657.1  047116.0  
810249937.1   

50.0  25.0  494771.6  791466.1  087453.0  
610652645.1   

50.0  50.0  494771.6  791466.1  087453.0  
610652645.1   

50.0  75.0  494771.6  791466.1  087453.0  
610652645.1   

50.0  00.1  494771.6  791466.1  087453.0  
610652645.1   

75.0  25.0  681970.7  32334.2  126940.0  
510919142.2   

75.0  50.0  681970.7  32334.2  126940.0  
510919142.2   

75.0  75.0  681970.7  32334.2  126940.0  
510919142.2   

75.0  00.1  681970.7  32334.2  126940.0  
510919142.2   

00.1  25.0  609871.8  827005.2  595306.0  000226.0  

00.1  50.0  609871.8  827005.2  595306.0  000226.0  

00.1  75.0  609871.8  827005.2  595306.0  000226.0  

00.1  00.1  609871.8  827005.2  595306.0  000226.0  

 
 
 

Since 1 ,)(  xxF and xxf )( , by Theorem 5, 
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Continuing with this procedure, 
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Table 3. Absolute error of approximating the solution of Equation
 
(31a) given that equation (31b) to

 
5th

 order
 
using FRDT method. 

 

Variable Absolute error,   ),(~),( 55 txutxuuE exact   

t  x  25.0  50.0  75.0  1  

25.0  25.0  990596.3  932475.0  183504.0  
610838508.5   

25.0  50.0  981192.7  864950.1  367008.0  

550512.0  

510167702.1   

25.0  75.0  971788.11  797425.2  
510751553.1   

25.0  00.1  962384.15  729899.3  734016.0  
510335403.2   

50.0  25.0  121892.9  893145.1  345244.0  000404.0  

50.0  50.0  243785.18  786290.3  690488.0  000808.0  

50.0  75.0  365677.27  679435.5  035732.1  001211.0  

50.0  00.1  487569.36  572579.7  380976.1  001615.0  

75.0  25.0  418329.12  102311.3  547420.0  004993.0  

75.0  50.0  836659.24  204622.6  094840.1  009985.0  

75.0  75.0  254988.37  306934.9  642259.1  014978.0  

75.0  00.1  673318.49  409245.12  189679.2  019970.0  

00.1  25.0  416232.15  497002.4  773588.0  030597.0  

00.1  50.0  832463.30  994005.8  547175.1  061195.0  

00.1  75.0  248695.46  491007.13  320763.2  091792.0  

00.1  00.1  664927.61  988010.17  094351.3  122389.0  
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Lastly, the exact solution of Equation (31a) ),( txuexact is 

obtained from Equation (35) as   approaches 1 from left 

and it is given by 
 

 
 
In order to demonstrate the agreement between the exact 

solution, Equation 36 and the 
thn order approximate 

solution, Equation (33) of (31a) given that Equation (31b), 

the absolute errors:   ),(~),( 55 txutxuuE exact 
 
and

 

  ),(~),( 66 txutxuuE exact 
 
were computed as shown 

in Tables 3 and 4 by considering the 
th5 order 

approximate solutions,
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the 6
th
 order approximate solutions,
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 of  

Equation (31a) given that (31b) without loss of generality. 
 

Example 3: Taking 1 ,)(  xxF  in (2a) and 

choosing 
2)( xxf  in Equation (2b) (Kumar et al., 2012, 

2017; Cetinkaya and Kiymaz, 2013), consider the initial 
value problem: 
 

 
 

Since 1 ,)(  xxF
 
and 

2)( xxf  , by Theorem 5, 

the FRDT of Equation (37a) and (37b) are: 
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Table 4. Absolute error of approximating the solution of Equation
 
(31a) given that equation (31b) to

 
6th

 order
 
using 

FRDT method. 
 

Variable Absolute error,   ),(~),( 66 txutxuuE exact   

t  x  25.0  50.0  75.0  1  

25.0  25.0  553849.6  051051.1  083754.0  000549.0  

25.0  50.0  107690.13  102100.2  167507.0  000917.0  

25.0  75.0  661546.19  153153.3  251261.0  001376.0  

25.0  00.1  215395.26  204204.4  335014.0  001834.0  

50.0  25.0  958815.11  226478.2  348246.0  007387.0  

50.0  50.0  917630.23  452956.4  696492.0  014774.0  

50.0  75.0  876445.35  679435.6  044738.1  022160.0  

50.0  00.1  835261.47  905913.8  392985.1  029547.0  

75.0  25.0  630090.17  683119.3  566033.0  038147.0  

75.0  50.0  260179.35  366238.7  132066.1  076294.0  

75.0  75.0  890260.52  049357.11  698100.1  114441.0  

75.0  00.1  520358.70  929421.12  264133.2  152588.0  

00.1  25.0  440261.23  163669.7  841516.0  008375.0  

00.1  50.0  880523.46  327338.14  683032.1  016750.0  

00.1  75.0  320784.70  491007.21  524548.2  025125.0  

00.1  00.1  761045.93  654676.28  366064.3  033501.0  
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Continuing with this procedure, 
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Then the inverse FRDT of  n

kk xU
0

)(
 denoted ),(~ txun is 

the
thn order approximate solution of Equation (37a) 

which is given by: 
 

 
 

By letting INn to  or taking limit of both sides of 

Equation (39) as  INn , the closed solution of 

Equation (37a) in the form of infinite fractional power 

series ),( txu is: 

 

 

Thus, by using Equation (6) in Equation (40),
 
the closed 

solution of Equation (36a) in terms of Mittag-Leffler 
function is: 
 

 
 

Lastly, the exact solution of Equation (37a), that is, 

),( txuexact which can be obtained from Equation (41) as 

  approaches 1 from left is 

 

 
 
In order to demonstrate agreement between the exact 

solution, Equation (42) and the 
thn order approximate 

solution, Equation (39) of (37a) given that (37b), the 

absolute errors:   ),(~),( 55 txutxuuE exact 
 
and

 
  ),(~),( 66 txutxuuE exact 

 
were computed as shown in 

Tables 5 and 6 by considering the 5
th
 order approximate 

solutions,
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Table 5. Absolute error of approximating the solution of Equation
 
(37a) given that (37b) to

 
5th

 order
 
using FRDT method. 

 

Variable Absolute error,   ),(~),( 56 txutxuuE exact   

t  x  25.0  50.0  75.0  1  

25.0  25.0  176872.5  603496.0  057421.0  
510727399.1   

25.0  50.0  707489.20  413986.2  229682.0  

516785.0  

510909595.1   

25.0  75.0  591851.46  431468.5  000155.0  

25.0  00.1  829957.82  655943.9  918729.0  000276.0  

50.0  25.0  871504.9  260829.1  139576.0  001248.0  

50.0  50.0  486018.39  043315.5  558304.0  004993.0  

50.0  75.0  84354.88  347458.11  256184.1  011233.0  

50.0  00.1  944072.157  173259.20  233215.2  019970.0  

75.0  25.0  593457.14  168811.2  464951.0  016227.0  

75.0  50.0  373826.58  675243.8  859804.1  064909.0  

75.0  75.0  341110.131  519297.19  184560.4  146045.0  

75.0  00.1  495306.233  700973.34  439217.7  259635.0  

00.1  25.0  138387.19  998305.4  .743397.0  105346.0  

00.1  50.0  553549.76  993219.19  973589.2  421384.0  

00.1  75.0  245486.172  894743.44  690575.6  948115.0  

00.1  00.1  214197.306  972876.79  894356.11  685537.1  

 
 
 

Table 6. Absolute error of approximating the solution of Equation
 
(37a) given that (37b) to

 
6th

 order
 
using FRDT method. 

 

Variable Absolute error,   ),(~),( 66 txutxuuE exact   

t  x  25.0  50.0  75.0  1  

25.0  25.0  033082.8  722149.0  056544.0  
610824464.1   

25.0  50.0  132328.32  888595.2  226178.0  
610297854.7   

25.0  75.0  297739.72  499339.6  508899.0  
610642017.1   

25.0  00.1  529313.128  554381.11  904710.0  
610919142.2   

50.0  25.0  950086.17  210047.2  148125.0  000259.0  

50.0  50.0  800343.71  840190.8  549992.0  001038.0  

50.0  75.0  550771.161  890427.19  333122.1  002334.0  

50.0  00.1  201370.287  360759.35  369995.2  004150.0  

75.0  25.0  .434758.29  372424.5  056544.0  004965.0  

75.0  50.0  739032.117  489696.21  071823.2  019859.0  

75.0  75.0  912821.264  351817.48  661602.4  044681.0  

75.0  00.1  956127.470  958785.85  287292.8  079432.0  

00.1  25.0  160618.41  592055.12  936834.0  042065.0  

00.1  50.0  642474.164  368219.50  747335.3  168259.0  

00.1  75.0  445566.370  328493.113  431503.8  378583.0  

00.1  00.1  569895.658  201.478276 989338.14  673037.0  



 
 
 
 
of Equation (37a) given that (37b) without loss of 
generality. 
 

Example 4: Taking 1 ,)(   xexF in (2a) and 

choosing 
xexf )( in Equation (2b) (Kumar et al., 2012, 

2017; Cetinkaya and Kiymaz, 2013), we have the initial 
value problem:  
 

 
 

Since 1 ,)(   xexF and
xexf )( , by Theorem 5, 

the FRDT of Equation (43a) and (43b) are: 
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Continuing with this procedure, 
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Then the inverse FRDT of  n
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 denoted by

),( txun is the 
thn order approximate solution of (43a) 

which is given by: 
 

 
 

By letting INn to  or taking limit of both sides of 

equation (45) as  INn , the closed form solution of 

Equation (43a) in infinite fractional power series, ),( txu

is 
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Thus, by using Equation (6) in (46),

 
the closed form 

solution of (43a) in terms of Mittag-Leffler function one 
parameter is given by: 
 

 
 
Lastly, the exact solution of Equation (43a), that is, 

),( txuexact which can be obtained from Equation (47) as

  approaches 1 from left is: 

 

 
 
In order to demonstrate the agreement between the exact 
solution, Equation (47) and the nth order approximate 
solution, Equation (45) of (43a) given that (41b), the 

absolute errors:   ),(~),( 55 txutxuuE exact 
 
and

 

  ),(~),( 66 txutxuuE exact 
 
were computed as shown 

in Tables 7 and 8 by considering the 5
th
 order 

approximate solutions,
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Equation (43a) given that (43b) without loss of generality. 
 

Example 5: Taking 1 ,)( 1   xexF  in (2a) and 

choosing 
xexf )( in Equation (2b) consider the initial 

value problem: 
 

 
 

Since 1 ,)( 1   xexF
 
and

1)(  xexf , by Theorem 

5, the FRDT of Equation (49a) and (49b) are: 
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Table 7. Absolute error of approximating the solution of Equation (43a) given that (43b) to
 
5th

 order
 
using FRDT method. 

 

Variable Absolute error,   ),(~),( 55 txutxuuE exact   

t  x  25.0  50.0  75.0  1  

25.0  25.0  230850.6  062347.1  681811.0  
710514423.4   

25.0  50.0  000570.8  364081.1  875463.0  

124116.1  

710796634.5   

25.0  75.0  272935.10  751515.1  
710443025.7   

25.0  00.1  190710.13  248989.2  443394.1  
710557033.9   

50.0  25.0  617463.8  273536.2  577669.0  
510998717.2   

50.0  50.0  910352.10  919279.2  741742.0  
510850429.3   

50.0  75.0  009169.14  748428.3  952415.0  
510944048.4   

50.0  00.1  988129.17  813077.4  222925.1  
510348284.6   

75.0  25.0  445593.9  892944.2  699766.0  000354.0  

75.0  50.0  128381.12  714614.3  898517.0  000455.0  

75.0  75.0  573150.15  769658.4  153718.1  000584.0  

75.0  00.1  996320.19  124362.6  481404.1  000750.0  

00.1  25.0  108369.10  415943.3  758937.0  002074.0  

00.1  50.0  368440.13  386157.4  974495.0  002663.0  

00.1  75.0  165417.17  631938.5  251276.1  003419.0  

00.1  00.1  040832.22  231551.7  606670.1  004390.0  

 
 
 

Table 8. Absolute error of approximating the solution of  Equation (43a) given that (43a) to
 
6th

 order
 
using FRDT method. 

 

Variable Absolute error,   ),(~),( 66 txutxuuE exact   

t  x  25.0  50.0  75.0  1  

25.0  25.0  915278.6  533970.1  060498.0  
810604951.1   

25.0  50.0  103923.8  969656.1  077681.0  
810060798.2   

25.0  75.0  405644.10  529089.2  099745.0  
810646117.2   

25.0  00.1  361111.13  388529.3  128075.0  
810397681.3   

50.0  25.0  339451.8  300288.2  112292.0  
610122038.2   

50.0  50.0  708067.10  953628.2  144186.0  
610724751.2   

50.0  75.0  749430.13  792534.3  185138.0  
610498649.3   

50.0  00.1  654618.17  869709.4  237722.0  
610492355.4   

75.0  25.0  863845.9  983228.2  162994.0  
510748253.3   

75.0  50.0  665427.12  830540.3  209289.0  
510812852.4   

75.0  75.0  262731.16  918511.4  268732.0  
510179824.6   

75.0  00.1  712492.20  315493.6  345059.0  
510935051.7   

00.1  25.0  055293.11  629946.3  764388.0  000290.0  

00.1  50.0  195277.14  660943.4  981494.0  000373.0  

00.1  75.0  227097.18  984770.5  260263.1  000478.0  

00.1  00.1  404056.23  684596.7  618209.1  000614.0  



Kenea         31 
 
 
 

Table 9. Absolute error of approximating the solution of Equation (49a) given that (49b) to
 
5th

 order
 
using FRDTM. 

 

Variable Absolute error,   ),(~),( 55 txutxuuE exact   

t  x  25.0  50.0  75.0  1  

25.0  25.0  937206.16  887759.2  853354.1  6227147.1 E  

25.0  50.0  747804.21  707957.3  379755.2  

055664.3  

6575688.1 E  

25.0  75.0  924733.27  761111.4  6022490.2 E  

25.0  00.1  856067.35  248989.6  923552.3  6597871.2 E  

50.0  25.0  424693.23  180112.6  570267.1  5151358.8 E  

50.0  50.0  657412.29  935423.7  016264.2  000105.0  

50.0  75.0  080887.38  189284.10  588932.2  000134.0  

50.0  00.1  896804.48  083300.13  324255.3  000173.0  

75.0  25.0  675784.25  863837.7  902161.1  000962.0  

75.0  50.0  968358.32  097368.10  442422.2  001237.0  

75.0  75.0  332211.42  965275.12  136131.3  001587.0  

75.0  00.1  355633.54  647742.16  026874.4  002039.0  

00.1  25.0  477396.27  285496.9  063005.2  005638.0  

00.1  50.0  339188.36  922811.11  648952.2  007239.0  

00.1  75.0  660441.46  309195.15  401321.3  009294.0  

00.1  00.1  911801.59  657394.19  367382.4  011933.0  
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Continuing with this procedure, 
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Then the inverse FRDT of  n

kk xU
0

)(


denoted ),(~ txun  
is 

the 
thn order approximate solution of Equation (49a) 

which is given by: 
 

 
 

By letting INn to  or taking limit of both sides of 

Equation (51) as  INn , the closed solution of 

Equation (49a) in the form of infinite fractional power 

series, ),( txu is 

 

 

Thus, by using Equation (6) in (52), the closed form 
solution of Equation (49a) in terms of Mittag-Leffler 
function is given by: 
 

 
 
Lastly, the exact solution of Equation (49a) which can be 

obtained from Equation (53) as   approaches 1 from left 

is: 
 

 
 
In order to demonstrate the agreement between the exact 
solution, Equation (54) and the nth order approximate 
solution, Equation (51) of (49a) given that (49b), the 

absolute errors:   ),(~),( 55 txutxuuE exact 
 
and

 

  ),(~),( 66 txutxuuE exact 
 
were computed as shown 

in Tables 9 and 10 by considering the 5
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   3.51                                                                        0 ,0 ,10 ,),( 1   txtEetxu x 
  (53) 

 

 3.52                                                                                            0 ,0 , 1   txe(x,t)u tx

exact  (54) 
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Table 10. Absolute error of approximating the solution of Equation (49a) given that (49b) to
 
6th

 order
 
using FRDTM. 

 

Variables Absolute error,   ),(~),( 66 txutxuuE exact   

t  x  25.0  50.0  75.0  1  

25.0  25.0  797675.18  169763.4  164451.0  8362709.4 E  

25.0  50.0  028747.22  354080.4  211159.0  8601830.5 E  

25.0  75.0  285473.28  874777.6  271135.0  8192892.7 E  

25.0  00.1  319265.36  210977.9  348144.0  8235855.9 E  

50.0  25.0  668978.22  252831.6  305241.0  6768297.5 E  

50.0  50.0  107544.29  028793.8  391938.0  6406641.7 E  

50.0  75.0  374826.37  309176.10  503257.0  6510314.9 E  

50.0  00.1  990227.47  237241.13  646195.0  5221149.1 E  

75.0  25.0  812711.26  109254.8  443064.0  000102.0  

75.0  50.0  428200.34  412487.10  568906.0  000131.0  

75.0  75.0  206686.44  369899.13  730489.0  000168.0  

75.0  00.1  302391.56  167290.17  937968.0  000216.0  

00.1  25.0  051402.30  867216.9  077822.2  000788.0  

00.1  50.0  586764.38  669757.12  667977.2  001014.0  

00.1  75.0  546387.49  268292.16  425750.3  001299.0  

00.1  00.1  618820.63  888898.20  398748.4  001669.0  

 
 
 

 
Equation (49a) given that (49b) without loss of generality. 
 
 
DISCUSSION 
 
Here, the results obtained from the five application 
examples considered above are discussed. Through the 
first three aforementioned examples, the fractional 
reduced differential transform method (FRDTM) was 
successfully applied to the time fractional diffusion 
equations, that is, Equation (2a) given that (2b), for 

1 ,)(  xxF , the different initial conditions 1)( xf , 

xxf )(
 
and 

2)( xxf  , and 10   . As a result, 

the closed solutions of Equation (2a) given that (2b) in 
the form of infinite fractional power series and in terms of 
Mittag-Leffler function in one parameter as well as its 
exact solutions were

 
obtained and are in complete 

agreement with the results obtained by Cetinkaya and 
Kiymaz (2013), Kumar et al. (2012) , Kumar et al. (2017). 

For 
2

1
  with the same )(xF ,

 
  and )(xf

 
specified 

above, the closed solutions of Equation (2a) given that 
(2b) in the form of infinite fractional power series and in 
terms of Mittag-Leffler function in one parameter as well 
as their exact solutions, which were obtained by FRDTM, 

are in complete agreement with the results obtained by 
Das (2009).

 
 

Through the fourth example above, FRDTM was 
applied to

 
Equation (2a) given that (2b), where

xexF )( , 1 , xexf )( and 10   ,
 
and the

 
closed solutions in the form of infinite fractional power 
series and in terms of Mittag-Leffler function in one 
parameter as well as exact solution were

 
obtained.

 
The 

results obtained here are in complete agreement with the 
results obtained by Cetinkaya and Kiymaz (2013). 
Through the fifth example mentioned above, FRDTM was 
applied to Equation (2a) given that (2b), where

1)(  xexF , 1 , 1)(  xexf and 10   ,
 

and 

the
 
closed solutions in the form of infinite fractional power 

series and in terms of Mittag-Leffler function in one 
parameter as well as exact solution were

 
obtained. 

Without loss of generality, only the 5
th
 and 6

th
 order 

approximate solutions of Equations (25a), (31a), (34a), 

(43a) and (49a);    1,01 ,75.0 ,5.0 ,25.0  and

       1,01,01 ,75.0 ,5.0 ,25.01 ,75.0 ,5.0 ,25.0),(  tx  
were considered to compute the absolute errors in this 
paper. The validity, accuracy and convergence of the 
FRDTM was checked through the computed absolute 
errors,   ),(~),( 55 txutxuuE exact 

 
and

 
  ),(~),( 66 txutxuuE exact  for each values of parameter 



 
 
 
 

   1,01 ,75.0 ,5.0 ,25.0  , where u(x,t) is the exact 

solutions,  (x,t)u5 is  the 5
th
  order  approximate  solutions  

and (x,t)u6 is the 6
th
 order approximate solutions of  each 

of the five examples considered earlier. From observation 

made through Tables 1 to 10,
 
the absolute errors: (u)E5

and (u)E6  
decrease as  1 ,75.0 ,5.0 ,25.0  

increases 

from 0.25 to 1.
 
This implies that the 5

th
 and 6

th
 order 

approximate solutions of Equations (25a), (31a), (34a), 
(43a) and (49a) converge to their exact solutions as 

 1 ,75.0 ,5.0 ,25.0
 
increases

 
from 0.25 to 1. It was 

also observed that for each

   1 ,75.0 ,5.0 ,25.01 ,75.0 ,5.0 ,25.0),( tx  and for 

each  1 ,75.0 ,5.0 ,25.0  throughout Tables 1 to 10, 

.65 (u)E(u)E   This shows that the validity, accuracy and 

convergence of the fractional power series solutions of 
Equations (25a), (31a), (34a), (43a) and (49a)

 
can be 

improved by calculating more term in the series solutions 
by using the present method (FRDTM). 

 
 
Conclusion 
 
In this study, a new general recurrence relation for 
fractional reduced transform of time fractional diffusion 
equations with initial conditions of the form (2a) given that 
(2b) was developed and then methodology of fractional 
reduced differential transform method (FRDTM) was also 
developed with the help of this new general recurrence 
relation. The fractional reduced differential transform 
method was applied to five time fractional diffusion 
equations with initial conditions, which exist in the 
literature except the last one, to obtain their closed 
solutions in the form of infinite fractional power series and 
in terms of Mittag-Leffler function in one parameter as 
well as exact solutions. The results evaluated for the first 
four time fractional diffusion equations are in good 
agreement with the ones already existing in the literature. 
Precisely, the general recurrence relation works 
successfully in solving time fractional diffusion equations 
with initial conditions by using fractional reduced 
differential transform method to obtain their closed 
solutions in the form of infinite fractional power series and 
in terms of Mittag-Leffler function one parameter as well 
as exact solutions with a minimum size of calculations. 

Thus, it can be said that the general recurrence relation 
used in solving time-fractional diffusion equations with 
initial conditions by using fractional reduced differential 
transform method can be extended to solve other 
fractional partial differential equations with initial 
conditions which can arise in fields of sciences. 
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