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Abstract

Extragalactic fast radio bursts (FRBs) have large dispersion measures (DMs) and are unique probes of intergalactic
electron density fluctuations. By using the recently released First CHIME/FRB Catalog, we reexamined the
structure function (SF) of DM fluctuations. It shows a large DM fluctuation similar to that previously reported in
Xu & Zhang, but no clear correlation hinting toward large-scale turbulence is reproduced with this larger sample.
To suppress the distortion effect from FRB distances and their host DMs, we focus on a subset of CHIME catalog
with DM < 500 pc cm . A trend of nonconstant SF and nonzero correlation function (CF) at angular separations 6
less than 10° is seen, but with large statistical uncertainties. The difference found between SF and that derived from
CF at 6 < 10° can be ascribed to the large statistical uncertainties or the density inhomogeneities on scales on the
order of 100 Mpc. The possible correlation of electron density fluctuations and inhomogeneities of density
distribution should be tested when several thousands of FRBs are available.

Unified Astronomy Thesaurus concepts: Radio transient sources (2008); Intergalactic medium (813);

Astrostatistics (1882)

1. Introduction

Extragalactic fast radio bursts (FRBs; Lorimer et al. 2007;
Thornton et al. 2013; Petroff et al. 2016) have their dispersion
measures (DMs) greatly exceeding those of Galactic pulsars in
the high Galactic latitude region (Cordes & Chatterjee 2019).
Thus, they provide unique probes of the intergalactic electron
density fluctuations (Macquart & Koay 2013; Xu &
Zhang 2016a; Ravi et al. 2016; Zhu et al. 2018). The
cosmological applications of FRBs on, e.g., constraining the
baryon content of the universe (Keane et al. 2016; Macquart
et al. 2020) and cosmological parameters (Deng & Zhang 2014;
Gao et al. 2014; Zhou et al. 2014; Walters et al. 2018; Kumar &
Linder 2019) via a DM-redshift relation, probing the
reionization history of the universe (Deng & Zhang 2014;
Zheng et al. 2014; Caleb et al. 2019; Beniamini et al. 2021) and
tracing the large-scale structure of the universe (Masui &
Sigurdson 2015; Shirasaki et al. 2017; Reischke et al. 2021;
Rafiei-Ravandi et al. 2021) have been extensively studied in the
literature.

It is not straightforward to extract the intergalactic electron
density fluctuations from the DM fluctuations of FRBs due to
the unknown distances and host DMs. First, DMs are projected
electron densities. Their fluctuations are affected and can even
be dominated by dispersion of distances, depending on the line-
of-sight thickness of the sample (Lazarian & Pogosyan 2016;
Xu & Zhang 2020a, 2020b; Einasto et al. 2021). Second, the
host DMs have a large dispersion (Yang et al. 2017) and can be
exceptionally large (up to ~900 pc cm ) for some FRBs (Niu
et al. 2021; Rafiei-Ravandi et al. 2021). In addition, with a
limited sample size, the statistical measurements of DM
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fluctuations especially at small angular separations (6 < 10°)
have large uncertainties, which makes the interpretation of the
results more challenging (Xu & Zhang 2020a, hereafter XZ20).

Theoretical models on DM fluctuations of FRBs based on
cosmological hydrodynamic simulations (e.g., Takahashi et al.
2021) provide insight into their statistical properties. Direct
statistical measurements with observational data are important
for testing the theoretical predictions and the underlying
cosmological models. XZ20 made the first attempt and found
a power-law structure function (SF) of DM fluctuations up to
100 Mpc by using 112 FRBs from FRBCAT (Petroff et al.
2016),” but the statistical uncertainties are very large due to the
small sample size. The recently released First CHIME/FRB
Catalog (The CHIME/FRB Collaboration et al. 2021)” with
535 FRBs provides us an opportunity to reexamine the SF with
a larger FRB sample.

The galaxy two-point correlation function (Limber 1953;
Peebles 1980; Landy & Szalay 1993) is a powerful statistical
tool for studying clustering of galaxies, clusters of galaxies,
superclusters, and testing cosmological models (e.g., Klypin &
Kopylov 1983; Bahcall & Burgett 1986; Saunders et al. 1991;
Zehavi et al. 2002; Hawkins et al. 2003; Weinberg et al.
2004, 2013). Different from the galaxy correlation statistics that
relates galaxies to the underlying mass distribution, the SF of
DM fluctuations directly measures the statistical properties of
the projected intergalactic electron density field.

The SF in general has a higher accuracy than the correlation
function (CF) in the presence of noise and large-scale
inhomogeneities (Monin & Yaglom 1965). For a similar
degree of accuracy, the SF requires a much smaller data size
than the CF (Schulz-Dubois & Rehberg 1981), which is an
advantage for studying DMs of FRBs with a still limited
sample size. The SF measurements have been applied to
various observables related to velocities, densities, and

5 http://www.frbcat.org
® https:/ /www.chime-frb.ca/catalog


https://orcid.org/0000-0002-0458-7828
https://orcid.org/0000-0002-0458-7828
https://orcid.org/0000-0002-0458-7828
https://orcid.org/0000-0001-7775-7261
https://orcid.org/0000-0001-7775-7261
https://orcid.org/0000-0001-7775-7261
https://orcid.org/0000-0002-9725-2524
https://orcid.org/0000-0002-9725-2524
https://orcid.org/0000-0002-9725-2524
mailto:sxu@ias.edu
http://astrothesaurus.org/uat/2008
http://astrothesaurus.org/uat/813
http://astrothesaurus.org/uat/1882
https://doi.org/10.3847/2041-8213/ac399c
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ac399c&domain=pdf&date_stamp=2021-11-26
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ac399c&domain=pdf&date_stamp=2021-11-26
http://creativecommons.org/licenses/by/4.0/
http://www.frbcat.org
https://www.chime-frb.ca/catalog

THE ASTROPHYSICAL JOURNAL LETTERS, 922:1.31 (8pp), 2021 December 1

801 o ° o o °o o ° e ° . e |
o . . - 80,00, .
R A T L S *
o0 * r'. o'ﬁ..:ﬁ:.‘ o o.. . ® e " ®e
40F 80 ° ¥ a8 L USe °% e oo 1
Y f-::wggma.-, o2
5 . ] el o o, .
g 200 . T3 '..{‘zf'\'-a". <., y ]
a . L QL a: "o.:.:' .° oo, .
L xJ o ° % ° b
.-8. 0 . :o \... -: ::’%.‘ o °* .
m S e o, . °%,
10} 20 e ° e o:.'t ® o0 ® LI . °
40’. oo ®e o": %!'3 ® ‘ ° : . o
oo [} : ° S.. ° o ® :. % . ‘.'. ‘
B0 e . o °° . . . o
-80 1

0 50 100 150 200 250 300 350
GL [degrees]

Figure 1. 535 FRBs from the CHIME Catalog in Galactic coordinates (red)
overlaid on the 112 FRBs from FRBCAT used in XZ20 (black).

magnetic fields in the multiphase astrophysical media (e.g., Xu
& Zhang 2016b; Xu 2020; Li et al. 2020), as well as velocities
of young stars (Ha et al. 2021). The applications of the SF to
large-scale intergalactic density fluctuations and studies on its
cosmological implications are rare. In this work, we will further
explore the SF of DM fluctuations by using the CHIME /FRB
Catalog. We will examine whether the nonflat SF found from
FRBCAT, which is indicative of the correlation of electron
density fluctuations, can be still seen with a larger FRB sample.
We will further compare the SF with the CF measurement, to
investigate whether they contain equivalent statistical informa-
tion as expected for homogeneous large-scale intergalactic
density distribution. In Section 2, we first compare the SF of
DM fluctuations measured by XZ20 and that measured with the
new CHIME Catalog. We then focus on the SF and CF analysis
by using a subset of CHIME FRBs with relatively small DMs.
The summary of our main results is given in Section 3.
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2. SF and CF of DM Fluctuations of FRBs
2.1. Comparison between FRBCAT and CHIME Samples

Figure 1 shows the sky distribution of the FRBs from the
CHIME Catalog and from FRBCAT. Some FRBs have their
sky locations overlapped. The CHIME sample has a smaller
sky coverage, but contains more FRB pairs with smaller
angular separations.

The SF of FRB DMs is defined as

D(0) = ((DM(X)) — DM(X))*), &)

where X; and X, are the sky locations of a pair of FRBs with
the angular separation 6, and {(...) denotes the average over all
pairs with the same 6. The CF of DM fluctuations is

£(0) = ({DM(X)) {DM(X2)), @)

where DM = DM — DM is the DM fluctuation, and DM is
the mean DM. We note that the SF of DMs and the SF of DM
fluctuations are the same. For a stationary or a spatially
homogeneous random process, the SF and CF contain
equivalent information, and they are related by

D(0) = const — 2£(0). 3)

In a more general case with low-frequency noise or large-scale
fluctuations, the statistical characteristics of SF and CF are not
mutually interchangeable. It was found in statistical mechanics
that the SF is less distorted than the CF by large-scale
inhomogeneities (Monin & Yaglom 1965). To reach a similar
accuracy, the CF requires a much larger (by 1 to 2 orders of
magnitude) data set than the SF (Schulz-Dubois &
Rehberg 1981).

Figure 2(a) presents D(#) measured by XZ20 with 112 FRBs
from FRBCAT, in comparison with that measured with 491
FRBs (in this work) with distinct coordinates from CHIME.
The uncertainty of the latter is much smaller due to the
significantly larger sample size. We note that the error bars
show 95% confidence intervals, which are calculated at each 0
using the Student’s t-distribution when there are < 30 FRB
pairs and the normal distribution for more FRB pairs. The
power-law trend indicated by the dashed line at small 6 is not
seen for the CHIME sample. We further combine the two
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Figure 2. (a) D(f) measured by XZ20 with 112 FRBs from FRBCAT (black) and that measured with 491 FRBs from CHIME (red). Error bars indicate 95%
confidence intervals. The dashed line is the fit to the data points at small 6 for the 112 FRBs (XZ20). (b) D(f) measured with a total of 603 FRBs from combined

FRBCAT and CHIME samples (blue).
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Figure 3. (a) D(0) measured from a subsample of 112 randomly selected FRBs from CHIME. (b) D(6) measured from CHIME, but with the same number of FRB
pairs in each 6 bin as that for D() measured from FRBCAT (see Figure 2). Error bars indicate 95% confidence intervals. Three colors represent three different
realizations. The dashed line corresponds to the fit to D(f) at small § measured with FRBCAT (see Figure 2).

catalogs, and the corresponding D(6) of a total of 603 FRBs’ is
displayed in Figure 2(b). We see that D(f) is dominated by
CHIME sample, so the inclusion of FRBCAT FRBs does not
significantly change the result, except for the very large 6 end.

We believe that the different D(f) measured with the
FRBCAT and CHIME catalogs at small # is mainly caused by
the different sample sizes. The latter measurements are within
the uncertainty range of the former. The effect of sky coverage
is unclear and thus cannot be completely excluded.

To further examine the effect of sample size on D(f), we
randomly select 112 FRBs, i.e., the same number of FRBs as in
FRBCAT, from the total CHIME sample as a subsample. As an
example, D(f) measured from three subsamples is shown in
Figure 3(a). We see that different subsamples can lead to
different D(6) at both small and large 6. As an alternative test,
we randomly select the same number of FRB pairs from the
total CHIME sample in each 6 bin as that for FRBCAT sample.
D(6) corresponding to three realizations is shown in Figure 3(b)
as an example. In both tests, we find large statistical
uncertainties of D(f) at small 0 because of the small sample
size. Occasionally, a power-law trend can be seen, e.g., blue
circles in Figure 3(b). It suggests that the power-law trend of D
(0) seen at small 6 with a small sample of FRBs from FRBCAT
is likely a coincidence.

2.2. Statistics with a Subset of the CHIME Sample

Both D(0) and £(6) of DM fluctuations are 2D projected
statistical measurements of electron density fluctuations. The
larger the dispersion of the distances to FRBs, the greater the
difference between the 2D and 3D statistics is expected.
Depending on the thickness of the 2D sample, the correlation
information can be partly or completely lost (Einasto et al.
2021). In addition, the host DMs of FRBs can largely distort
the measured D(6) and £(6). In particular, some FRBs can have
very large host DMs (~400 pc cm ), as suggested by Rafiei-
Ravandi et al. (2021). A repeating FRB with the host
DM~ 902 pc cm " is recently found by Niu et al. (2021).
As an attempt to constrain the thickness of the 2D sample and
exclude FRBs with exceptionally large host DMs, we explore

7 Some FRBs in the two catalogs have overlapping sky positions.
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Figure 4. D(0) measured using a subset of the CHIME catalog, with 210 FRBs
with DM < 500 pc cm ™2 (red), 322 FRBs with DM < 700 pc cm > (black),
385 FRBs with DM < 900 pc cm > (blue), 468 FRBs with DM < 1500 pc
cm ™ (orange), and 491 FRBs without DM cut (green). Error bars indicate 95%
confidence intervals.

the possibility of using a subset of the FRB sample by applying
a DM cut for the statistical analysis. Figure 4 shows different D
(0) corresponding to different DM cuts. Naturally, the DM
fluctuation of a subset of FRBs becomes smaller at a smaller
DM cut value.

There is a trade-off between the thickness of the 2D sample
and the sample size. A higher cut value leads to a thicker 2D
sample, and a lower one brings larger statistical uncertainties.
We apply here a tentative DM cut at 500 pc cm ° (see Figure 5
for the corresponding DM distribution). According to the DM—
redshift relation (Deng & Zhang 2014; Zhang 2018),

(1 + 2)dz
[l +2)° + QT2
where (2, =0.3089 £ 0.0062 and 24 =0.6911 £ 0.0062 are
the matter density parameter and dark energy density parameter
(Planck Collaboration et al. 2016). We approximately sample

the nearby density structures within redshift z=0.57
(2 x 10° Mpc as the line of sight (LOS) comoving distance)

Z
DMigm ~ 807 pc cm™3 j(‘) “4)
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Figure 5. DM distribution for the entire CHIME Catalog (light gray) and for
the subset with DM < 500 pc cm > (dark gray).

by assuming the DM is dominated by its intergalactic
component. The optimized selection cut should be determined
based on the accurate modeling of distances and host DMs of
FRBs, as well as the sample size.
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Figure 6 presents the D(6) of the subset of FRBs, with the
total DM used in Figure 6(a), and the DM excess between DM
determined by fitburst (The CHIME/FRB Collaboration et al.
2021) and Milky Way DM modeled by NE2001 (Cordes &
Lazio 2002), i.e., DM (NE2001), in Figure 6(b) and YMW16
(Yao et al. 2017), i.e., DM (YMW16), in Figure 6(c). We see
that D(6) is not sensitive to the modeled Milky Way DMs. In
all cases, it shows nonflat D(#) at small 8. Nonflat SF indicates
a possible correlation of electron density fluctuations within
scales ~2000 Mpc x 10° ~350 Mpc. To evaluate the statistical
uncertainty, we perform Monte Carlo simulations by rando-
mizing DMs while holding the locations of FRBs fixed. As
shown by D(6) measured from 40 Monte Carlo realizations, the
uncertainty becomes larger toward smaller 6 with fewer pairs of
FRBs available.

The measured £(6) is shown in Figure 7. It is more sensitive
to the modeled Milky Way DMs than D(6). For comparison,
we also present the analytically modeled £(0; z;) by Takahashi
et al. (2021). In their model the free-electron abundance and the
power spectrum of its spatial fluctuations are measured from
hydrodynamic cosmological simulations, IllustrisTNG300
(Nelson et al. 2018). The cyan line shows its analytical

10° 102
0 [deg]
(b) DM (NE2001)

10"

0 [deg]

(c) DM (YMW16)

Figure 6. D(0) vs. 6 measured with 210 FRBs with total DM < 500 pc cm 3, corresponding to (a) total DM, (b) DM (NE2001), and (c¢) DM (YMW16). Both
measurements with real data (red) and Monte Carlo realizations (black) are presented.
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Figure 7. Same as Figure 6, but for {(¢). The cyan line shows the analytical approximation based on cosmological simulations given by Takahashi et al. (2021).

approximation at 6 2> 1°,
0\
§(0; zp) = 2400(—) pcem6, Q)
deg

where z is the source redshift. Takahashi et al. (2021) found
that the above expression is insensitive to z; at 7z, 2> 0.3 as a
large-scale signal is dominated by nearby structures. This
further justifies our use of a subset of FRBs with relatively
small DMs. Our measured £(6), with a large uncertainty, shows
some trends of increasing £(6) toward smaller 6 at 6 < 10°.
Toward larger 6, £(0) gradually approaches zero as theoretically
expected. We see that as the theoretically modeled £(6; zy) is
small, a more accurate comparison between the model and
observational measurements requires a larger sample size and a
higher angular resolution.

To examine whether D(6) and £(0) of FRBs provide similar
information on the correlation of electron density fluctuations,
in Figure 8, we compare the measured D(f) with that derived
from £(6) by using the relation in Equation (3). The constant

value in Equation (3) is determined by visually matching the
two at large 6, which is 2.0 x 10* pc* cm™® for the case with
total DMs, and slightly larger for modeled extragalactic DMs,
ie., 2.1 x 10* pc® cm ¢ for DM (NE2001) and 2.3 x 10* pc?
cm© for DM (YMW16). We see that the measured D(6) and
that derived from £(f) have a better agreement at 6> 10°,
indicative of the homogeneity of the large-scale density
distribution. The discrepancy seen at smaller 6 can be caused
by the limited sample size, as smaller-0 measurements suffer
larger statistical uncertainties. It can also be caused by
intermediate-scale (on the order of 100 Mpc) inhomogeneities
of intergalactic density distribution. Possible inhomogeneities
in the universe on such length scales were suggested in, e.g.,
Kopylov et al. (1988), Sylos Labini et al. (2009), Sylos Labini
(2011), and Perivolaropoulos (2014), based on the observed
galaxy distribution and other effects, though these claims are
controversial (e.g., Hogg et al. 2005; Ntelis et al. 2017). In the
latter situation, we do not expect that D(f) and &(f) can be
determined from each other at small § even with a larger
sample of FRBs. As the SF is less sensitive to large-scale
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Figure 8. Comparison between directly measured D(6) (red) and D(6) derived from measured £(0) (dark blue). The cyan line corresponds to D(6) derived from the

analytical approximation of &(6; z,) given by Takahashi et al. (2021).

fluctuations and has a higher accuracy using less data compared
with the CF (Schulz-Dubois & Rehberg 1981), the statistical
measurements of DM fluctuations at small § with SF can be
more reliable and informative.

Obviously, the quantitative comparison between the simu-
lated and observationally measured statistics of DM fluctua-
tions requires a sufficiently large sample of FRBs. By using the
rejection sampling method (Mackay 2003), we generate a large
sample of mock FRBs from the target DM distribution of the
CHIME FRBs with DM < 500 pc cm > (see Figure 9(a)).
Under the consideration that future radio telescopes, such as the
Square Kilometre Array, will enable full sky coverage, we have
the mock FRBs randomly distributed across the entire sky. The
measured D(0) and that derived from &(0) of the mock samples
are presented in Figures 9(b) and (c). It shows that at least
several thousands of FRBs are needed to have a clean
comparison with the expectation from cosmological simula-
tions. A larger angular resolution is achieved with the increase
of sample size. We note that as the DM fluctuations of mock
FRBs are uncorrelated and homogeneous, the flatness of D(6)
and the good match between D(6) and that converted from £(6)
are expected for a sufficiently large sample (see Figure 9(c)).

3. Summary

We compared the SF of DM fluctuations measured in XZ20
with FRBCAT and that measured with a larger sample of FRBs
from the First CHIME/FRB Catalog. We found a consistent
DM fluctuation level at # > 10° in both cases, but no clear
power-law trend at smaller 6 hinting toward large-scale
turbulence can be recovered with the larger sample. The
apparent signal in the earlier FRBCAT analysis is likely to be a
statistical fluctuation caused by the scarcity of close FRB pairs
in the FRBCAT sample, but the effect of different sky coverage
of the two catalogs cannot be completely excluded.

To suppress the distortions by distances and host DMs on the
statistical properties of intergalactic electron density fluctua-
tions, we introduced a tentative DM cut and focused on a
subset of CHIME FRBs with DM < 500 pc cm . Nonflat D(9)
is observed at 6 < 10° for the subsample, but the statistical
uncertainty is large due to the DM cut.

We also measured the CF, i.e., £(6), of the subsample.
Compared with D(0), it is more sensitive to the Milky Way DM
models, showing more obvious differences between the
measurements with total DMs and modeled extragalactic
DMs. A trend of increasing £(0) with decreasing 6 is seen,
with a large statistical uncertainty. As the theoretically expected
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Figure 9. (a) DM distributions of CHIME FRBs with DM < 500 pc cm > (dark gray) and mock samples of 855 (gray) and 6136 (light gray) FRBs. (b) and (c) Same
as Figure 8, but for DMs of mock FRBs. Error bars indicate 95% confidence intervals.

correlation signal is weak (Takahashi et al. 2021), a larger
sample size with a higher angular resolution is necessary for a
more accurate comparison between the modeled and observa-
tionally measured £(6).

The discrepancy between D(6) and that converted from £(6)
at 0 <10° can arise from large statistical uncertainties or
density inhomogeneities on scales on the order of 100 Mpc. In
the latter situation, the discrepancy would persist when more
FRBs are available. Its potentially important cosmological
implications on, e.g., determination of the Hubble constant
(Fanizza et al. 2021), deserve further study. The inhomoge-
neous distribution of matter on scales < 100 Mpc can give rise
to deviations from isotropic and homogeneous expansion due
to gravitational induced peculiar velocities, and thus the value
of the Hubble constant measured at distances < 100 Mpc has a
large scatter (e.g., Shi & Turner 1998; Freedman &
Turner 2003). As demonstrated by our analysis with mock
FRBs, a large sample of several thousands of FRBs is needed
for a clean comparison with the expectation from cosmological
simulations and determining the effect of statistical uncertain-
ties on the apparent disagreement between D(#) and that
converted from () of the current FRB sample.
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