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Abstract

Two-dimensional particle-in-cell simulations are performed to study the electromagnetic radiation emitted at the
second harmonic 2ωp of the plasma frequency by a weak electron beam propagating in a background plasma with
random density fluctuations, in solar wind conditions relevant to Type III solar radio bursts. The dynamics of the
waves, the beam, and the plasma are calculated over several thousands of plasma periods. For relevant
comparisons, simulations with and without applied density fluctuations are performed for the same parameters.
This Letter evidences for the first time the impact of density fluctuations on the physical mechanisms driving the
generation of electromagnetic waves emitted at 2ωp. Results obtained show that (i) the beam radiates
electromagnetic waves at 2ωp as a result of nonlinear processes of Langmuir waves’ coalescence, despite wave
scattering on the density fluctuations that strongly affect the Langmuir spectra; (ii) the fraction of initial beam
energy transferred asymptotically to the electromagnetic waves at 2ωp is by one order of magnitude smaller when
the plasma involves density fluctuations of average level around 5%; (iii) compared to the homogeneous case, the
ratio of electromagnetic energy radiated at 2ωp to the energy carried by the Langmuir wave turbulence is
significantly larger during all the nonlinear stage; (iv) asymptotically, when the plasma is inhomogeneous,
electromagnetic emissions at 2ωp present isotropized spectra whereas quadrupolar radiation occurs for the
homogeneous plasma case.

Unified Astronomy Thesaurus concepts: Solar radio emission (1522); Solar radio flares (1342); Space plasmas
(1544); Plasma physics (2089)

1. Introduction

For several decades, many observations in the interplanetary
space have reported that Type III solar radio bursts emit
electromagnetic waves at the fundamental and the second
harmonic of the electron plasma frequency ωp (e.g., Reid &
Ratcliffe 2014, and references therein). To date, several
mechanisms have been proposed to explain the electromagnetic
radiation emitted at the frequency 2ωp. First, in the frame of the
weak turbulence theory, it was argued that, whereas the nonlinear
wave–wave resonant interactions between Langmuir  and ion
sound  waves provide backward-propagating Langmuir waves
¢ through the electrostatic decay channel  ¢ +   , the

waves  and ¢ can merge to produce harmonic electromagnetic
waves  at 2ωp according to the nonlinear three-waves’
coalescence + ¢    (e.g., Melrose 1980). On another side,
the so-called antenna radiation mechanism of localized Langmuir
waves was also proposed (Malaspina et al. 2013), as well as
processes based on the strong turbulence theory (Galeev and
Krasnosel’skikh 1976), as electromagnetic radiation from intense
localized Langmuir waves or solitons. More recently, some
authors (Tkachenko et al. 2021) proposed a theoretical model of
generation of harmonic emissions of Type III solar radio bursts in
strongly inhomogeneous plasmas.

Numerical simulations performed in homogeneous plasmas
have shown that second harmonic electromagnetic emissions can
result from nonlinear wave–wave interactions, with correlations
between the energies carried by the harmonic waves and the
backward-propagating Langmuir waves (Kasaba et al. 2001;
Umeda 2010). Recently, two-dimensional (2D) particle-in-cell
(PIC) simulations studied the efficiency of the process leading to
second harmonic emissions (Henri et al. 2019), whereas some

authors (Lee et al. 2019) solved the entire set of electromagnetic
weak turbulence equations in the presence of a beam and
compared these results with PIC simulations.
On another side, calculations show that density gradients in

plasmas can affect the mode conversion efficiency of waves
(Willes et al. 1996). Linear conversion was shown to be an
efficient process to produce electromagnetic emissions at ωp as
well as backward-propagating Langmuir waves necessary for
the generation of 2ωp emissions (Yin et al. 1998). More
recently, it was shown using a 2D-PIC code (Sakai et al. 2005)
that the process of linear conversion in a plasma with a density
gradient was responsible for emission of electromagnetic waves
at ωp and 2ωp.
This Letter presents 2D PIC simulations aimed at studying

the second harmonic electromagnetic emissions resulting from
the Langmuir wave turbulence emitted by a weak electron
beam propagating in a plasma with random density fluctuations
(Celnikier et al. 1983; Krupar et al. 2018). For relevant
comparisons, simulations with and without applied density
fluctuations are performed at the same conditions. The set of
physical parameters is chosen as close as possible to solar wind
conditions relevant to Type III solar radio bursts. In particular,
as described below, we consider a weak and energetic beam
propagating in a randomly inhomogeneous plasma with density
fluctuations of average levels around a few percents of the
background plasma density and wavelengths much larger than
the Langmuir waves’ ones (see also Krafft et al. 2013, 2015;
Krafft & Volokitin 2020; Volokitin & Krafft 2020). The chosen
numerical parameters provide a high grid resolution associated
to a very low numerical noise and an accurate energy
conservation. At this stage, it is important to point out that
the background plasma density fluctuations are applied initially
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and evolve self-consistently over time. The waves’, the beam’s,
and the plasma’s dynamics are calculated over several
thousands of plasma periods. The objective is to evidence for
the first time the physical mechanisms driving the generation,
in a randomly inhomogeneous plasma with Langmuir wave
turbulence, of electromagnetic emissions at the frequency 2ωp,
as well as the role played by the density fluctuations.

2. Model and Parameters

The simulations are performed with the open source
relativistic full PIC code SMILEI (Derouillat et al. 2018),
which includes both electrons and ions as finite-size particles. It
solves the Maxwell and Poisson equations using a Yee mesh
with centered electric and magnetic fields following the finite-
difference time-domain method. The 2D3V version of SMILEI
is used, which involves two spatial dimensions and three
velocity components. Three species are taken into account: the
background plasma’s electrons and ions, as well as the beam
electrons, with a realistic mass ratio mp/me= 1836, where mp

and me are the proton and the electron masses.
Initially, the electron and ion plasma velocity distribution

functions are Maxwellian; note that a small velocity ve=
−nbvb/(n0− nb) is applied at this stage to the background
electron population (of density n0 − nb), to keep a net zero
current. The beam, which propagates along the x-axis, is
described by a Maxwellian drifting with the velocity vb; its
density nb= 5 10−4 n0 is chosen as small as possible in order to
fit at most the characteristics of actual electron beams in the
solar wind. In order to avoid ion acoustic wave damping, the
ratio of the ion to the electron plasma temperatures is chosen as
Ti/Te= 0.1.

The background plasma is initiated without or with random
density fluctuations δn of average level ( )dD = á ñ =N n n0

2 1 2

0.05 and wavelengths much larger than the Langmuir waves’ ones.
The simulations are performed using a 2D (Cartesian geometry)
grid of Nx×Ny= 1024× 1024 cells of sizes lD = D =x y 2 ,D
where λD is the electron Debye length. Then the size of the
simulation plane is equal to l´ = ´L L 1448 1448x y D

2 . The
normalized wavenumber resolution of the box is δkx,yλD= 0.0043
(along each direction), to compare with the theoretical wavevectors’
moduli of the electromagnetic waves emitted at frequency 2ωp, i.e.,

l =k v c3 0.048D T . The time step has been chosen in order
to verify the CFL condition of the SMILEI code (Derouillat et al.
2018).

The physical parameters used are typical of Type III solar
radio bursts regions in weakly magnetized solar wind and
coronal plasmas. The beam drift velocity is vb= 9vT (vT is the
thermal velocity of the background plasma), and its thermal
velocity satisfies = =v v c0.028T Tb , so that vb= 0.25c. Long
numerical computations of several thousands of plasma periods
(up to ωpt; 8100) are necessary to follow the full dynamics of
such weak beams and the subsequent generation of electro-
magnetic wave emissions. The simulations are monitored by
controlling the relative variation of the total energy, which is
actually less than 2× 10−4 over roughly 106 time steps. Note
that the chosen parameters allow to keep the turbulence
parameter roughly below 10−2 so that ponderomotive effects
are not effective.

Performing PIC simulations with all these physical and
numerical constraints is a challenging task. Indeed, we use
1800 particles per cell per each of the three populations (i.e.,
for the plasma electrons and ions as well as for the electron

beam). Then, the numerical noise is reduced below 10−2 during
all the simulation time, which is much smaller than the average
level ( )dD = á ñ =N n n 0.050

2 1 2 of the initially applied
background density fluctuations and than the maximum values
reached locally by |δn/n0| in some space regions, as one can
see in Figure 1, which shows the initial spatial distribution of
the density fluctuations. It is generated by inverse Fourier
transform of a 2D Gaussian spectrum δnk(kx, ky) with random
phases.

3. Electromagnetic Emissions

Numerical calculations are performed with the same physical
and numerical parameters for both homogeneous and randomly
inhomogeneous plasmas, in order to study the impact of the
background fluctuations on the physical processes responsible for
the electromagnetic wave radiation at frequency 2ωp. Hereafter the
time is normalized by the electron plasma frequency ωp, the space
coordinate by the electron Debye length λD, the velocity by the
plasma electron thermal velocity vT and the electric and magnetic
fields E and B as eE/(mecωp) and eB/(meωp), respectively, where
e is the electron charge. Two- and three-dimensional fast Fourier
transforms are used, combined with Hanning windowing when
necessary, and filtering using Butterworth bandpass filters. Then,
the component kx (along the x-axis) of the wavevector k is parallel
to the direction of the electron beam propagation whereas the
component ky is perpendicular to it.
Figures 2(a)–(b) show the spatial distributions of the

magnetic field component Bz(x, y) at asymptotic times, when
(a) the plasma is homogeneous (i.e., δn(x, y)= 0 and ΔN= 0)
and (b) when it is initially randomly inhomogeneous, with
ΔN= 0.05. Note that for ΔN= 0 the length of the simulation
is larger than for ΔN= 0.05, as the beam relaxation process is
longer. In both cases, one can observe the formation of waves
propagating obliquely, with wavelengths λx of the order of
200λD. Such value is in good agreement with the theoretical
estimation of lk 0.048D (i.e., l l 185x D), where k is
the wavevector of the electromagnetic waves  emitted at 2ωp

as a result of the coalescence + ¢    of the beam-driven
 and backscattered ¢ Langmuir waves. One can observe that
the density fluctuations and the subsequent waves’ scattering
and transformation phenomena on the inhomogeneities do not
suppress but only moderately attenuate (by a factor around 2)

Figure 1. Initial distribution of the background plasma density fluctuations δn/n0
in the plane (x,y), corresponding to an average level ( )dD = á ñ =N n n 0.050

2 1 2 .
The size of the box in each direction is 1448λD.
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the amplitudes of the electromagnetic emissions. Note that the
presence of density fluctuations modifies the resonance
conditions whether it is (i) between the beam electrons and
the primary Langmuir waves , or (ii) between the beam-
driven and the backscattered Langmuir waves  and ¢ during
their nonlinear interactions. Mechanisms as wave refraction,
reflection, conversion, tunneling, trapping, localization, or/and
diffusion lead to the transport of wave energy toward smaller or
larger wavevector scales, depending on the characteristics
(average level, wavelengths, variability, etc.) of the random
density fluctuations, and eventually modify strongly the
Langmuir wave spectra, as shown hereafter.

Figure 3 shows at different times during the saturation stage of
the beam instability (i.e., at ωpt 1000), the distributions in the (kx,
ky)-space of the electric wave spectral energy densities |Exk|

2 (in
logarithmic scale) emitted at the frequency ωk;ωp, for ΔN= 0
(top row) and ΔN= 0.05 (bottom row), where Exk(kx, ky) is the
Fourier transform of the electric field Ex(x, y). One can observe the
excitation of Langmuir waves  (around lk 0.1x D ) and ¢
(around l -¢k 0.07x D ); k and k are the wavevectors of the
waves and ¢ . ForΔN= 0, the spectra widen significantly when
time increases, along the x and y directions, due to the beam
relaxation process and the subsequent energy transfer to larger
wavenumbers. Such observations are in good agreement with
calculations performed in the frame of the electromagnetic weak

turbulence theory (Ziebell et al. 2015). The backscattered waves
¢ mainly result from the electrostatic three-waves’ decay
 ¢ +   , where  are ion acoustic waves with  k k2x x

(see forthcoming paper). Meanwhile, for ΔN= 0.05 (Figure 3,
bottom row), the spectral broadening occurs earlier and more
strongly, even before wave saturation is reached, as the linear
scattering phenomena of the Langmuir waves  on the density
fluctuations transform them, notably into backward-propagating
Langmuir waves with kx< 0. Thus, if in both cases ΔN= 0 and
ΔN= 0.05 one observes that energy is transferred as time
increases from the Langmuir waves  with positive kx> 0 to
those with negative kx< 0, it is likely not owing to the same
process, even if for ΔN= 0.05, the Langmuir waves  also
experience electrostatic decay. Asymptotically, energy is approxi-
mately equivalently shared between positive and negative k-space
regions, for both directions x and y.
Let us now examine in Figure 4 the corresponding logarithmic

distributions of the magnetic wave spectral energy density |Bzk|
2

emitted at the harmonic frequency ωk; 2ωp, for ΔN= 0 (top
row) and ΔN= 0.05 (bottom row), for the same times as in
Figure 3; Bzk(kx, ky) is the Fourier transform of the magnetic field
component Bz(x, y). For the homogeneous plasma case (top row),
one observes that, as time increases starting from ωpt= 1296, the
circular structure of radius lk v c3D T , which corresponds to

Figure 2. Isocontours of the Bz(x, y) magnetic component at asymptotic times. Panel (a): the plasma is homogeneous (i.e., δn(x, y) = 0 and ΔN = 0) and the
asymptotic time is ωpt = 8100. Panel (b): the plasma is initially randomly inhomogeneous, with ΔN = 0.05; the asymptotic time is ωpt = 6480.

Figure 3. Distributions in the (kx, ky)-space of the normalized electric wave spectral energy density log10|Exk|
2 emitted at the frequency ωk ; ωp, for ΔN = 0 (top row)

and ΔN = 0.05 (bottom row). The first three columns correspond to the times ωpt = 1296, ωpt = 2560 and ωpt = 4180; the last column shows the spectra near
asymptotic times, i.e., at ωpt = 7960 for ΔN = 0 and at ωpt = 6350 for ΔN = 0.05.
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the dispersion of transverse waves at frequency ωk; 2ωp, begins
to diffuse toward positive kx, presenting asymptotically the
quadrupolar-type emission predicted by the theory (Melrose 1980).
At the same time ωpt= 1296 but for ΔN= 0.05 (bottom row),
one can note the presence of electromagnetic waves at ωk; 2ωp

(circle), together with magnetic energy diffusing slightly toward
kx> 0, in agreement with the occurrence of the coalescence
process + ¢    whose resonant conditions impose that

∣ ∣= + = -¢ ¢    k k k k k ;x x x x x it follows that k x should be
mostly positive, because at the early time considered
(ωpt= 1296), there is more electric energy |Exk|

2 carried by
waves with ∣ ∣> ¢ k kx x than by waves ¢ with ∣ ∣ >¢ k kx x (see
Figure 3). At the next time ωpt= 2560, the energy density |Exk|

2 is
almost equivalently shared between the primary and the back-
scattered Langmuir waves (Figure 3, bottom row), as it can also
be observed for the magnetic energy density distribution |Bzk|

2 at
the same time, diffused in both half planes kx> 0 and kx< 0. The
significant anisotropy between <k 0y and >k 0y is also
visible in the beam-driven Langmuir waves’ spectrum (Figure 3,
bottom row). Further, at ωpt= 4180, the same conclusions can be
stated; the magnetic energy density is more concentrated in the
half plane where <k 0x , in agreement with the fact that more
energy is carried by waves ¢ with ∣ ∣ >¢ k kx x than by waves 
with ∣ ∣> ¢ k k .x x The picture presented at the asymptotic time
confirms these observations: the magnetic field spectrum tends to
be isotropized, as it is also the case for the energy distribution of
the asymptotic Langmuir spectrum, contrary to the homogeneous
plasma case where quadrupolar emission occurs. All these
findings, which can also be partly applied to the case ΔN= 0,
tend to confirm that the observed electromagnetic waves emitted
at 2ωp result from the coalescence + ¢   , for both values
of ΔN. The following pictures will bring additional arguments in
this favor.

The first column of Figure 5 shows, for the homogeneous
plasma (ΔN= 0, top row (panel (a)) and the plasma with
density fluctuations (ΔN= 0.05, bottom row (panel (c)), the
variations with time of the energies ∬( ) ∣ ∣/ W E dxdy1 2 x

2

and ∬( ) ∣ ∣/¢ ¢ W E dxdy1 2 x
2 carried by the Langmuir waves

 and ¢ at frequency ωk; ωp, as well as the energy
∬( ) ∣ ∣/ W B dxdy1 2 z

2 of the electromagnetic waves  at
frequency ωk; 2ωp; E x, ¢E x, and B z are the electric and
magnetic fields associated with the waves , ¢ , and ,
respectively. These values have been obtained by selecting the
adequate frequencies’ and wavevectors’ domains corresp-
onding to the waves’ characteristics when performing the
sums ∣ ( )∣wå w E k k, ,k k xk k x y, ,

2
x y k

and ∣ ( )∣wå w B k k, ,k k zk k x y, ,
2

x y k
,

where Exk(ωk, kx, ky) and Bzk(ωk, kx, ky) are the 3D Fourier
transforms of Ex(t, x, y) and Bz(t, x, y). All of the energies are
normalized by the initial beam kinetic energy.
For both ΔN, the energies of the waves  increase with a

quasi-similar linear growth rate (however, this is significantly
smaller for ΔN= 0.05), and saturate around ωpt∼ 1000, whereas
the waves ¢ and grow with the same (forΔN= 0.05) or close
(for ΔN= 0) rates. When the plasma is inhomogeneous, the
growth rate of the waves ¢ and is roughly 2 times larger than
forΔN= 0, and their saturation occurs a few thousands of plasma
periods earlier. Indeed, beam-driven Langmuir waves’ scattering
on density fluctuations leads to the production of backscattered
waves mainly through linear phenomena whereas, when the
plasma is homogeneous, the generation of these waves results
mostly from the nonlinear resonant decay  ¢ +   .
Asymptotically, the saturation levels reached by the waves 
and ¢ have close values, due to efficient energy transfers from the
beam-driven to the backscattered waves. In turn, the waves 
saturate near the normalized energy levels around 10−4 and 10−5,
for ΔN= 0 and ΔN= 0.05, respectively. It means that
asymptotically, in the homogeneous plasma, a fraction of 10−4

of the initial beam energy is used for the generation of the waves
, whereas for the inhomogeneous plasma, this fraction is one
order of magnitude less. This reduction is likely due to the
damping of the beam-driven Langmuir waves occurring just after
their saturation whereas, for the homogeneous plasma, damping
appears later and with a slower rate. Figure 5(e) presents the time
variation of the ratios w of W to the normalized energy

+ ¢ W W carried by the Langmuir turbulence, for ΔN= 0.05
and ΔN= 0. In the linear stage, both curves are very close but,

Figure 4. Distributions of the normalized magnetic wave spectral energy densities log10(|Bzk|
2) emitted at the harmonic frequency ωk ; 2ωp, forΔN = 0 (top row) and

ΔN = 0.05 (bottom row). The times of each column are the same as in Figure 3.
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during the nonlinear saturation, the ratio w is always significantly
larger for ΔN= 0.05, by almost one order of magnitude, and
around a factor of 2 at asymptotic times. Then we can state that
the fraction of Langmuir wave turbulent energy transferred
asymptotically to the electromagnetic radiation at 2ωp is
significantly larger when the plasma is randomly inhomogeneous,
reaching values larger than 10−3.

The second column of Figure 5 (ΔN= 0, top row (panel (b))
and (ΔN= 0.05, bottom row (panel (d)) shows the time variations
of W and the product ¢ W W , as well as the time variations of

¢W and  W W , multiplied by a coupling factor α (or a¢,
depending on ΔN). One observes that, for both ΔN, the curves
are perfectly superimposed or follow closely the same growth
during the generation process of the waves, what confirms that
W is proportional to ¢ W W in this time range, relation which has

to be satisfied if the waves , ¢ , and interact resonantly via a
three-waves nonlinear process. The coalescence + ¢   
actually takes place. Moreover one can see that, except at the most
early times, ¢W µ  W W during all the simulation time, with a
proportionality factor α for ΔN= 0 and a¢ for ΔN= 0.05.

4. Conclusion

Two-dimensional PIC simulations are performed to study the
electromagnetic radiation emitted at the second harmonic 2ωp of
the plasma frequency by a weak electron beam propagating in a
background plasma with random density fluctuations, in solar wind
conditions relevant to Type III solar radio bursts. The dynamics of
the waves, the beam and the plasma are calculated over several

thousands of plasma periods. For relevant comparisons, simulations
with and without applied density fluctuations are performed for the
same parameters. This Letter evidences for the first time the impact
of density fluctuations on the physical mechanisms driving the
generation of electromagnetic waves emitted at 2ωp.
More precisely, results obtained show that: (i) the beam radiates

electromagnetic waves at 2ωp as a result of nonlinear processes of
Langmuir waves’ coalescence, according to the channel

+ ¢   , despite the presence of linear phenomena of
waves’ scattering and transformations on the density fluctuations
that strongly affect the Langmuir wave spectra; (ii) the fraction of
initial beam energy transferred asymptotically to the electro-
magnetic waves at 2ωp, which is of the order of 10−4 for the
homogeneous plasma, is by one order of magnitude smaller when
the plasma involves density fluctuations of average level around
5%; (iii) nevertheless, compared to the homogeneous case, the
ratio of electromagnetic energy radiated at frequency 2ωp to the
energy carried by the Langmuir wave turbulence is significantly
larger during all the nonlinear stage, reaching asymptotically
values larger than 10−3; moreover, the growth rate of the
electromagnetic waves’ generation is also larger when density
fluctuations are present, as backscattered Langmuir waves ¢ are
produced at early times due to linear interaction phenomena of
waves with density fluctuations, so that beam-driven Langmuir
waves  do not need to reach sufficiently large amplitudes to
produce them by nonlinear decay; (iv) asymptotically, when the
plasma is inhomogeneous, the electromagnetic emissions at 2ωp
present isotropized spectra whereas quadrupolar radiation occurs
for the homogeneous plasma case.

Figure 5. Panels (a–b): homogeneous plasma (ΔN= 0); panels (c–d): inhomogeneous plasma with density fluctuations (ΔN= 0.05). First column: variations with the time
ωpt of the energies W and ¢W carried by the beam-driven Langmuir waves (black dotted lines labeled by “L”), by the backscattered Langmuir waves ¢ (blue dotted lines
labeled by “ ¢L ”) at frequency ωp, and of the energy W carried by the electromagnetic waves of frequency 2ωp (red dotted lines labeled by “H”). Second column: variations
with ωpt of the energy W (red dotted lines) and of the product ¢ W W (green dotted lines labeled by “ ´ ¢L L ”), as well as of the energy ¢W (blue dotted lines) and the
producta  W W (pink dotted lines labeled by “ ( )a ´L H ” forΔN= 0 and “ ( )a¢ ´L H ” forΔN= 0.05); the multiplication by the factors α or a¢ allows to evidence more
clearly by superimposition of the curves the close link between the red and the green curves, as well as the pink and the blue curves. Panel (e): time variation of the ratio

( )= + ¢  w W W W for ΔN= 0 (solid line) and ΔN= 0.05 (dashed line). The energies are normalized by the initial beam kinetic energy.
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This Letter is the first of a series of forthcoming papers that
will be aimed at presenting in detail the whole results provided
by the PIC simulations.
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