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Abstract 
 

A third order analytic approximation solution of Lyapunov orbits around the collinear equilibrium in the 
planar restricted three-body problem by utilizing the Lindstedt Poincaré method is presented. The 
primaries are oblate bodies and sources of radiation pressure. The theory has been applied to the                
binary α-Centuari system in six cases. Also, we have determined numerically the positions of the 
collinear equilibrium points and shown the effects of the parameters concerned with these equilibrium 
points. 
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1 Introduction 
 
The restricted three body problem (R3BP) is an instance whereby two bodies (known as primaries) which 
have significant masses as compared to a third body (known as the infinitesimal body) with negligible mass, 
move in circular orbits about their common barycentre. And the motion of the third body is influenced by the 
gravitational attraction of the primaries; whereas the motion of the primaries is not affected by the 
gravitational field of the third boy. As such, this problem can also be viewed as a special case of the two 
body problem (2BP). 
 
Models for the R3BP can also be taken from the stellar systems [1,2]. Studies with applications to the binary 
star systems enable scientists to determine the mass of a star by the calculations of their orbits. This in turn 
allows other astronomical parameters like size, temperature, radius and density of the double stars to be 
determined by astronomers.    
 
So far, the R3BP has been shown to have only particular solutions. One of such is the five stationary or 
equilibrium points (three of which lie on the line joining the primaries called the collinear equilibrium points 

and are denoted as 1L , 2L and 3L while the other two which form triangular configurations with the 

primaries and known as the triangular equilibrium points are represented as4L and 5L ). Another particular 

solution is the periodic orbits around the equilibrium points or around the primary bodies. 
 
Apart from the classification of orbits in periodic solutions among several other uses, studies on periodic 
orbits are valuable when it comes to station keeping and launching of artificial satellite. Over the years, 
studies have been carried out on periodic orbits around the equilibrium points in the R3BP, in-plane or 
perpendicular to the plane of motion [3,4,5,6,7,8,9,10,11,12,13]. These investigations involved the use of 
either analytical, numerical or a combination of both methods. The analytical methods provide approximate 
solutions or exact solution to the problem. From these solutions, the infinitesimal or starting orbits near the 
equilibrium points are obtained. To continue to families of periodic orbits around the collinear equilibrium 
points or the triangular points or the primary bodies, researchers make use of the numerical application 
method known as the differential corrections scheme. 
 
In order to examine some perturbing effects (radiation pressure, Poynting-Robertson drag, solar wind drag, 
Coriolis and centrifugal forces and angular velocity) and to consider the non-spherical nature (oblateness and 
triaxiallity) of the primaries, some researchers have made modifications to the classical R3BP in their studies 
of periodic orbits around the equilibrium points (specifically for this study, the collinear equilibrium points). 
Some of such works can be seen in [14,15,16,17,18,19,20,21,22,23,24,25]. 
 
Richardson [26] gave a third order analytical solution for halo-type periodic motion about the collinear 
points of the R3BP by utilizing the method of successive approximations in conjunction with a technique 
similar to the Lindstedt-Poincaré method with application to Sun-Earth system. Also, by giving an analytical 
approximation to periodic orbits in the circular restricted three body problem (CR3BP), Nagel-Pichardo [27] 
derived a simple set of analytical expressions that give periodic orbits on the disc of binary systems without 
the need to solve the equations of motion by numerical integration. 
 
In their work on periodic solutions in the CR3BP, Gao-Zhang [28] presented an analytical expression of 
periodic solutions of the first-order approximate system. Pal-Kushvah [29] gave a third order analytic 
approximation solution of halo and Lissajous orbits when they considered the effect of radiation pressure, 
Poynting-Robertson drag and solar wind drag on the Sun-(Earth-Moon) R3BP.   
 
In this study, we give a third order analytic approximation of periodic solution around the collinear 
equilibrium points in the planar circular restricted three body problem (PCR3BP) by utilizing the Lindstedt-
Poincaré method. From the approximate periodic solution, the initial conditions or starting orbits near the 



collinear points have been obtained. The theory is applied to the binary 
Centuari A is the primary and α-Centuari B is the secondary. The infinitesimal body is taken to be a possible 
exoplanet with negligible mass as compared to the masses of the primaries moving in the plane of motion of 
the binary system. The assumptions made here are that both stars have significant radiation effects and are 
sufficiently oblate in shape. Arbitrary chosen val
drawn in six instances (cases). In the first case, the binary system is considered with respect to the classical 
problem (spherical nature of the primaries) while the other five cases have values 
concerned. 
 
In the second section of this study, we give the equations of motion of the problem and show the regions of 
possible motion of the infinitesimal body. In the next section, we numerically determine the positions of the 
collinear equilibrium points and show the effects of the radiation pressure and oblateness parameters on 
these points. In sect. 4, we give the third order Lindstedt
the collinear equilibrium points, and presen
the last section. 
 

2 Equations of Motion 
 
Let 1m , 2m and m be the masses of the primary, secondary and infinitesimal bodies (that is, 

α-Centuari B and an exoplanet), respectively. Here, the primary bodies are moving in circular orbits about 
their common barycentre, while the infinitesimal body is mov

motion of the primaries. The mass parameter is given by

the distance between the primaries, such that the gravitational constant

chosen so that 1 2 1m m+ =
 
and we take 

system with the position of the infinitesimal body as 

1( ,0)P µ  and 2( (1 ),0)P µ− −  respectively. Thus, the equations of motion of the infinitesimal body in the 

dimensionless synodic coordinate system with radiation pressure parameters 

oblateness parameters 1A and 
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and n  is the mean motion, given as  
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linear equilibrium points and show the effects of the radiation pressure and oblateness parameters on 
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be the masses of the primary, secondary and infinitesimal bodies (that is, 

Centuari B and an exoplanet), respectively. Here, the primary bodies are moving in circular orbits about 
their common barycentre, while the infinitesimal body is moving and exerting no influence in the plane of 

parameter is given by 2

1 2

m

m m
µ =

+
.  Let the unit of distance be taken as 

the distance between the primaries, such that the gravitational constant 1G = . The unit of mass has been 

and we take 1 1m µ= −  and 2m µ= . We let Oxybe the synodic

system with the position of the infinitesimal body as ( , )P x y and the primary and secondary bodies as 

respectively. Thus, the equations of motion of the infinitesimal body in the 

dimensionless synodic coordinate system with radiation pressure parameters 1q and 2( 1, 1,2)iq q i≤ =
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Centuari system, where α-
Centuari B is the secondary. The infinitesimal body is taken to be a possible 

with negligible mass as compared to the masses of the primaries moving in the plane of motion of 
the binary system. The assumptions made here are that both stars have significant radiation effects and are 

ues for the radiation and oblateness coefficients have been 
drawn in six instances (cases). In the first case, the binary system is considered with respect to the classical 

for all the parameters 

In the second section of this study, we give the equations of motion of the problem and show the regions of 
possible motion of the infinitesimal body. In the next section, we numerically determine the positions of the 

linear equilibrium points and show the effects of the radiation pressure and oblateness parameters on 
Poincaré local analysis of Lyapunov orbits around 

t the numerical results in sect. 5, while we give the conclusions in 

be the masses of the primary, secondary and infinitesimal bodies (that is, α-Centuari A, 

Centuari B and an exoplanet), respectively. Here, the primary bodies are moving in circular orbits about 
ing and exerting no influence in the plane of 
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1 2

3
1 ( )

2
n A A= + + . 

 
The Jacobi integral which is obtained from eq. (1) is given by 
 

2 2 2x y C+ = Ω −& & , 

 

where the symbol C  denotes the Jacobi Constant. 
 

 
 

Fig. 1. The configuration of the rotating coordinate system for the restricted three-body problem 
where 1 2,m m and m are the oblate primaries and infinitesimal body respectively 

 
The Jacobian integral is used to obtain the Zero-velocity surface plots by assuming that the velocity 
variables are equal to zero. This surface divides the space into two regions. One of the regions is known as 
the region of possible motion while the other is called the forbidden region. These regions describe the area 
where the infinitesimal body is allowed and where it is not allowed. In Fig. 3 there are three distinct curves 
which represent the Zero-velocity curves for the Jacobi Constant when the first, second and third collinear 
equilibrium points are considered with respect to the present model. Within these curves are the forbidden 
regions of motion for the infinitesimal body.  
 

The actual masses of the stars α-Centuari A and α-Centuari B are 302.192 10× Kg and 301.970 10× Kg 

respectively. Then, the mass parameter
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Fig. 2. The forbidden region of the infinitesimal body with respect to the Jacobian constant C and the 
collinear equilibrium points 

 

3 Determination of the Collinear Equilibrium Points 
 
The positions of the collinear equilibrium points are obtained from the solution of the nonlinear algebraic 

equation 0xΩ = , when 0y =  by solving forx . That is, we solve 
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The solutions of eq. (2) have been found to exist within the intervals ( , 1 ),µ−∞ − +  ( 1 , )µ µ− +  and

( , )µ +∞ . By solving eq. (2) numerically, each of these intervals contain a real root which correspond to,1L

, 2L and 3L respectively. In Table 1, we have shown six cases and their corresponding collinear equilibrium 

points for all the participating parameters. The first case corresponds to the classical case where 

1 2 0A A= = and 1 2 1q q= = . The other five cases have values as shown in the table. The effect of the 
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oblateness and radiation pressure of the binary α-Centuari system on the collinear equilibrium points have 
also been shown in Figs. 3 and 4 respectively. 
 
Table 1. Collinear Equilibrium points for binary αααα-Centuari system mass parameter ( 0.47333)µ =  

 
Case 

1A  2A  1q  2q  1L  2L  3L  

1 0 0 1 1 -1.20751483 -0.03765997 1.18902157 
2 0.01 0.001 0.4 0.1 -0.79423688 -0.16548350 0.95833957 
3 0.02 0.002 0.5 0.2 -0.88238502 -0.13509348 1.01122572 
4 0.03 0.003 0.6 0.3 -0.94520716 -0.12047798 1.05651685 
5 0.04 0.004 0.7 0.4 -0.99536901 -0.11247880 1.09634009 
6 0.05 0.005 0.8 0.5 -1.03761166 -0.10790176 1.13198424 
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(c) 
 

Fig. 3. The oblateness effects of the binary αααα-Centuari A system on the collinear equilibrium points 1L

in (a), 2L  in (b) and 3L in (c), for case 2 
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(c) 
Fig. 4. The radiation effects of the binary αααα-Centuari A system on the collinear equilibrium points 1L

in (a), 2L  in (b) and 3L in (c), for case 2 

 

4 Motion Around the Collinear Equilibrium Points 
 
In order to investigate the motions around the collinear equilibrium points, we obtain a new coordinate 

system that takes any of,  1, 2,3iL i =  (the collinear equilibrium points) as the origin with the axes as φ  

and ϕ parallel to Ox and Oy respectively. Thus, by setting 

 

iLx x φ→ + andy ϕ→ ,                                                                                                               (3) 

 
the equations of motion in eqs. (1) become 
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Next, the R.H.S. of eqs. (4) is expanded up to third order terms using the Taylor series expansion and we 
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In order to avoid absolute values for each case, the symbols 1υ  and 2υ  are being used to represent the signs 

of 10 1| |r x µ= −  and 20 1| 1 |r x µ= + −  at any of the collinear equilibrium points.  

 
We search for periodic solutions represented in the following equations in powers of a parameter ε : 
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Putting eqs. (5) into (7) and equating the coefficients of 2,ε ε and 3ε , we get first order, second order and 

third order systems respectively, which can be solved successively. 
 
4.1 The First order system 
 
The equations obtained for the first order terms in ε are  
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and the period of the periodic orbit is given by 
2

T
π

ω
= . We set 1ϖ = and 0ϑ = so that, 

 

0ϖ ∗ =   and  
2

1

2nωϑ
ω

∗ −=
+D

. 

 
Thus, the periodic solution of system (10) become 
 

1

*
1 1

( ) ( ),

( ) ( ),

Cos

Sin

φ τ ωτ
ϕ τ ϑ ωτ

=

=
                                                                                                                   (11) 

 
where 
 

2
10

1 .
2

A

n

ωϑ
ω

∗ − −=
 

 
 
 
 



 
 
 

Singh and Gyegwe; BJMCS, 22(1): 1-18, 2017; Article no.BJMCS.33168 
 
 
 

11 
 
 

4.2 Second order system 
 
This is given by 
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4.3 Third order system 
 
 In this aspect, we have 
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So, working as previously, the periodic solution of system (15) is obtained as  
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ϕ τ ϑ ωτ

= +

=
 

 
where 
 

 21 22
2

23

,ϖ Θ + Θ= −
Θ

with 

 
* * * *

21 5 2 1 0 1 4 1 3 2 1 1

* 3* * * * *
22 3 1 4 1 2 1 1 0 1 2 1 1

* * 2
23 1 1 1 1 1

(3 4 ( 2 ) ( 4 ))( ),

( 3 2 ( 2 ))( ),

2( 4 ( ) 2( )( )),

n

n

n n n

ϖ ϖ ϑ ϑ ϑ ϑ ω
ϑ ϑ ϖ ϑ ϖ ϑ ϑ ϑ ω

ω ϑ ω ϑ ω ω

Θ = + + + + +

Θ = − + + − + + +

Θ = − + + + +

h h h h D

D D D h

h D h
 

 
and 
 

31 32
3

33

,ϖ Θ + Θ= −
Θ

 having 

 

* 3* * *
31 3 1 4 1 2 1 1 2

* * * 2
32 5 2 1 1 4 1 2 2 1

2 2 2 2
33 1 1

3
( 2 ( )) ,

2
1

( 4 ( 4 ))( 9 ),
4

36 ( 9 )( 9 ),

n

n

ϑ ϑ ϖ ϑ ϑ ω

ϖ ϑ ϑ ϑ ω

ω ω ω

Θ = − + +

Θ = − + − + +

Θ = − + +

D D D

h h h h D

h D
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and 
 

* 1 2 3
3

4

,ϑ Φ + Φ + Φ= −
Φ

 

* 3* * *
1 1 3 1 4 1 2 1 1 2

* * *
2 5 2 1 1 4 1 3 2

* 3* * * 2
3 3 1 4 1 2 1 1 2

2 2 4
4 1 1 1 1

( 2 ( ),

6 ( 4 ( 4 )) ,

9( 2 ( )) ,

4( 9( 4 ) 81 .

n

n

ϑ ϑ ϖ ϑ ϑ
ϖ ϑ ϑ ϑ ω

ϑ ϑ ϖ ϑ ϑ ω
ω ω

Φ = − + +

Φ = − + − +

Φ = − + +

Φ = + + − +

h D D D

h h h h

D D D

h D h D  
 
Therefore, the third order approximation of periodic solution under oblate binary α -Centuari A system 
around the collinear equibrium points as a function of parameter ε is being obtained as 

 
2 3

0 1 2 3

* * 2 * 3
1 2 3

2 3
1 2 3

* *
1 2

( ) [ ( )] [ (2 )] [ ( ) (3 )] ,

( ) [ ( )] [ (2 )] [ (3 )] ,

( ) sin( ) 2 sin(2 ) [ sin( ) 3 sin(3 )] ,

( ) cos( ) 2 cos(2

cos cos cos cos

sin sin sin

φ τ ωτ ε ϖ ϖ ωτ ε ϖ ωτ ϖ ωτ ε
ϕ τ ϑ ωτ ε ϑ ωτ ε ϑ ωτ ε
φ τ ω ωτ ε ωϖ ωτ ε ωϖ ωτ ϖ ωτ ε
ϕ τ ωϑ ωτ ε ωϑ ωτ

= + + + +

= + +

= − − − +

= +

&

&
2 * 3

3) 3 cos(3 ) .ε ωϑ ωτ ε+

           (16) 
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(c)                                                                            (d) 

 

               
                                                 (e)                                                                                 (f) 
 

Fig. 5. In (a), (b), (c), (d), (e) and (f) [which also correspond to figures for cases 1,2,3,4,5 and 6] we 
show the starting orbits where in each frame, the orbits in colour blue, green and red correspond to 

the  first, second and third order systems respectively 
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5 Numerical Results  
 
In the analysis presented above, we have obtained a third order approximation of periodic solution with the 
aid of the Lindsted-Poincaré method around the collinear equilibrium points by taking the primaries as 
oblate and radiating bodies in the restricted three-body problem. The mass parameter 0.47333µ =  is 

obtained from the binary α-Centuari system. As such, the initial conditions ( )0 0, ,x y T& as shown in Tables 

2, 3 and 4 have been obtained by substituting the data presented in Table 1 in eqs. (16) for small values of 
the orbital parameter ε  in all the cases (1 to 6) at 0τ = . Also, in Tables 2, 3 and 4, the fifth column and 

sixth column give the Jacobi Constant and the positive imaginary root ( )iω+  to the characteristic equation 

of system (9), respectively.  
 

In Fig. 4,  we show in (a), (b), (c), (d), (e) and (f) [which also correspond to figures for cases 2,3,4,5 and 6], 
the starting orbits where in each frame, the orbits in colour blue, green and red correspond to the  first, 
second and third order systems respectively. It can be seen that these starting orbits are all oval in shape [14].     
                                       

Table 2. The initial conditions for the Lyapunov orbits around the collinear equilibrium point 1L for 

binary αααα-Centuari system mass parameter 0.47333µ =  
 

Case 
0x  0y&  T  C  ω  

1 -1.17772296 -0.15844398 5.26996513 3.47518463 1.19274305 
2 -0.76451797 -0.13404904 3.32511205 1.33092657 1.89037668 
3 -0.85296994 -0.14128336 3.76434523 1.73135624 1.66980282 
4 -0.91603690 -0.15064417 4.03701109 2.07085351 1.55702180 
5 -0.96642262 -0.16040252 4.23423349 2.37809889 1.48449874 
6 -1.00888380 -0.17018986 4.38698369 2.66454003 1.43281004 

 

Table 3. The initial conditions for the Lyapunov orbits around the collinear equilibrium point 2L for 

binary αααα-Centuari system mass parameter 0.47333µ =  
 

Case 
0x  0y&  T  C  ω  

1 -0.00786810 -0.50240508 1.66199403 3.99865977 3.78203180 
2 -0.13576459 -0.09924098 4.49137120 0.95857994 1.39950897 
3 -0.10567840 -0.17260044 3.08133233 1.39453273 2.03993390 
4 -0.09130772 -0.24469574 2.48534026 1.83036201 2.52911619 
5 -0.08353241 -0.31972218 2.12428715 2.27039126 2.95897580 
6 -0.07917390 -0.39856305 1.87327991 2.71609925 3.35545918 

 

Table 4. The initial conditions for the Lyapunov orbits around the collinear equilibrium point 3L for 

binary αααα-Centuari system mass parameter 0.47333µ =  
 

Case 
0x  0y&  T  C  ω  

1 1.21881344 -0.14860729 5.61879746 3.43731738 1.11869387 
2 0.98805848 -0.10827148 4.11676337 1.88451257 1.52685829 
3 1.04064080 -0.12551658 4.23720387 2.19245704 1.48345807 
4 1.08568711 -0.14022498 4.33697474 2.48247540 1.44933154 
5 1.12528648 -0.15369264 4.41909062 2.75927019 1.42239995 
6 1.16071210 -0.16640484 4.48676943 3.02584346 1.40094435 
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6 Conclusions 
 
In this study, we have obtained a third order analytic approximation of Lyapunov orbits around the collinear 
equilibrium points in the R3BP by using the Lindstedt-Poincaré method. We modelled the primaries in the 
binary α-Centuari system where the primary body is α-Centuari A and the secondary body is α-Centuari B. 
The infinitesimal body is taken to be a possible exoplanet moving in the plane of motion of the binary 
system. 
 
Also, we numerically determined the positions of the collinear equilibrium points and showed the effects of 
the parameters concerned on these points. It can be seen that with each increase in the radiation pressure and 

oblateness parameters, the first collinear point 1L  moves away from the origin and closer to the position of 

that of the classical case and also closer to the secondary body, while the second collinear equilibrium point 

(inner collinear point) 2L  moves toward the origin and closer to that of the classical case. The third collinear 

equilibrium point 3L  moves further away from the primary body and approaches the classical case. 

 
The initial conditions or starting orbits obtained in all the cases are shown in both tabular and graphical 
forms in Tables 2, 3 and 4 and Figs. 4 respectively. The orbits are oval in shape. These results can be used to 
continue to families of periodic orbits and can be combined with those of the spatial orbits as well.  
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