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Abstract 
An effective power quality prediction for regional power grid can provide 
valuable references and contribute to the discovering and solving of power 
quality problems. So a predicting model for power quality steady state index 
based on chaotic theory and least squares support vector machine (LSSVM) is 
proposed in this paper. At first, the phase space reconstruction of original 
power quality data is performed to form a new data space containing the at-
tractor. The new data space is used as training samples for the LSSVM. Then 
in order to predict power quality steady state index accurately, the particle 
swarm algorithm is adopted to optimize parameters of the LSSVM model. 
According to the simulation results based on power quality data measured in 
a certain distribution network, the model applies to several indexes with 
higher forecasting accuracy and strong practicability. 
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1. Introduction 

The current power quality online monitoring technology is increasingly perfect. 
The power quality monitoring networks with hundreds of monitoring terminals 
have been set up in many places [1]. Huge amounts of power quality data are 
formed by long-term, real-time and continuous monitoring [2]. Digging Power 
quality monitoring data deeply and predicting power quality index of the partic-
ular region, people can be fully informed of the power quality situation, which is 
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benefit to know regional power quality trend. For this, we can discover potential 
problems of electric power quality and provide forward-looking guidance for 
power quality early warning. Thus, it provides the reliable basis and guarantee to 
make the right decisions for the management of electric power quality problems 
[3] [4] [5].  

Power quality index is divided into steady state index and transient state index. 
Steady state index includes voltage deviation, frequency deviation, three-phase 
unbalance, harmonic, voltage fluctuation and flicker. Current studies on power 
quality index for steady-state prediction are not many. One prediction method 
based on Monte Carlo sampling is proposed according to reference [6] to predict 
harmonic and negative sequence using real-time monitoring data. And it is ef-
fective to solve the disturbing problems of random fluctuation in traction load. 
In [7], the active power is predicted with ARIMA time series algorithm firstly, 
and then using the relationship between active power and power quality steady 
state index combining with neural network algorithm, we can predict the steady 
state index. References [1] proposed an optimal combination predicting model 
applying to distribution to predict future power quality conditions based on 
power quality monitoring data, which has a smaller error and higher forecast 
accuracy than a single forecast model. 

Chaotic time series prediction method explores the internal relations and de-
velopment change rules in data, which avoiding the subjectivity and randomness 
in the process of prediction [8]. On the basis of analyzing chaotic dynamics of 
power quality steady state index, this paper establishes a power quality steady 
state index prediction model based on chaotic theory and least squares support 
vector machine according to the characteristic objectivity. This paper also opti-
mizes parameters of least squares support vector machine by using particle 
swarm algorithm to improve the prediction accuracy. At last, according to the 
power quality monitoring data of a regional distribution network, the feasibility 
of the method is validated. 

2. Phase Space Reconstruction of Chaotic Time Series 

After a certain period of change, the trajectory of a chaotic system will eventually 
make a regular motion, resulting in a regular, visible trajectory (chaotic attrac-
tor). The trajectory is then transformed into a time-dependent sequence with the 
chaotic and complex features after stretching and folding. Because the triggering 
factors of the chaotic system are interrelated, the data points that are generated 
successively in system are also related. Packard et al. proposed to reconstruct 
phase space by using the delay coordinates of a variable in the original system. 
The Takens theorem further proves that the regular trajectories (attractors) can 
be recovered in a suitable embedding dimension space, where the delay coordi-
nate dimension m is greater than or equal 2d + 1 and d is the embedding dimen-
sion of the dynamic system. 

Considering the chaotic time series x = {xi|i = 1, 2, ..., N}, m is the embedded 
dimension, τ is the time delay, the phase space reconstruction is then carried out 
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to obtain a new data space. 

( 1){ | [ , , , ] , 1, 2, , }T
i i i i i mX X X x x x i Mτ τ+ + −= = =             (1) 

where M = N − (m − 1) * τ is the number of phase space. 
There are mainly two kinds of views about gaining of time delay τ and em-

bedding dimension m at present. One view is that the two parameters are not 
related, such as seeking the time delay of autocorrelation function method, mu-
tual information method, the average displacement method [9], seeking the em-
bedding dimension of the G-P algorithm, Cao method, singular value decompo-
sition method [10]. Another view is that the two parameters are related. A large 
number of experiments show that the time window τω for reconstructing phase 
space has a close relationship with τ and m. It results in some algorithms about 
solving τ and m, such as embedded window method, C-C method [11]. In this 
paper, an improved C-C method based on [12] is adopted to reconstruct the 
phase space of the power quality steady state index sequence.  

According to the principle of phase space reconstruction, the power quality 
steady state index sequence x = {xi | i = 1, 2, ..., N}, is transformed into a new da-
ta space where the dimension is m and time delay is τ. 
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According to Takens theorem, if there are suitable embedding dimension m 
and time delay τ, the trajectory in the embedding space after phase space recon-
struction is equivalent with the original system in the sense of differential ho-
meomorphism [13]. So if there is a smooth mapping f，the expression of phase 
space trajectory is given. 

( 1) ( ( )),   1, 2, ,X t f X t t M+ = =                 (3) 

The mapping f can be expressed as a time series. 
   ( ( ), ( 2 ), , ( ))

( ( ), ( ), , ( ( 1) ))
x t x t x t m
f x t x t x t m

τ τ τ
τ τ

+ + +
= + + −





              (4) 

So we can predict if the mapping relation f is figured out. Formula (4) is the 
mathematical model for the predicting of power quality steady state index. 

3. Least Squares Support Vector Machine and  
Its Parameter Optimization 

A. Least Squares Support Vector Machine  
The least squares support vector machine (LSSVM) is an improved algorithm 

based on support vector machine. The optimization problem is transformed into 
solving the linear equation, and the quadratic programming problem is avoided 
by introducing the method of the equality constraint and the least squares loss 
function. Then the complexity of the algorithm is reduced [14]. 

Assuming that the training data sample is (xi, yi), I = 1, 2, … , l, where yi is the 
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target value, xi is the input vector. And they are usually nonlinear. The least 
squares support vector machine maps the training sample set to a high dimen-
sional space by a certain nonlinear mapping to transform the nonlinear function 
estimation problem into a linear function estimation problem in a high dimen-
sional feature space. Assuming that the regression function is: 

( )Ty w x bϕ= +                          (5) 

where y is a nonlinear mapping function, w is the normal vector and b is the 
offset. The solution to the above problem can be described as follows: 
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where C is the regularization parameter and ξi is a slack variable. The Lagrange 
function is introduced to solve the optimization problem. 

1
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where αi is the Lagrange multiplier, the following relations can be obtained from 
the KKT condition. 
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The solution of expression (8) can be changed into: 
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where Q is the (k * k) order kernel matrix of element Kij, Kij = K(xi, yi) =(φ(xi), 
φ(xj)), I is a unit matrix, vector e = [1, … , 1]T，vector α = [α1, … , αk]T , and 
vector y = [y1, … , yk]T. 

The equation Qn = Q + I/C is defined to obtain the expressions of α and b. 
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The chaotic time series regression model of least squares support vector ma-
chine can be obtained by formula (9) and (10): 

1
( ) ( , )

k

i i
i

y f x K x x bα
=

= = +∑                   (11) 

The corresponding predicting input sample is Xp, The predicting value is: 
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In this paper, radial basis function (RBF) is used as kernel function. 
2 2( , ) exp( / 2 )i p i pK x x x x δ= − −                 (13) 

And δ2 is the variance of kernel function.  
B. Particle Swarm Optimization 

Particle swarm algorithm is a swarm intelligent optimization algorithm based 
on predation behavior of birds. It initializes a group of random particles, and 
then finds the optimal solution through the iterative operation [15]. During the 
iterative process, the particle updates itself by tracking two extremes: the optimal 
solution of the particle itself pbest, the optimal solution of the whole group gbest. 
The update equation of particle’s velocity and position is: 

1 1 1 2 2( ) ( )t t best t best tV wV c r p x c r g x+ = + − + −            (14) 

1 1t t tx x V+ += +                         (15) 

where t is the number of iterations, Vt is the particle flight speed at the t time 
iteration, w is the inertia weight, xt is the current particle position at the t time 
iteration, r1 and r2 are the evenly distributed random number over the interval [0, 
1], c1 and c2 are the learning factor for adjusting the maximum step size to the 
global and individual optimal particle direction respectively. 

The inertia weight w reflects the ability of the particle to inherit the previous 
speed. A larger inertia weight favors global search while a smaller inertia weight 
is more conducive to local search. In order to balance global search ability and 
local search ability, we can introduce a linear progressive decrease inertia weight. 

max
1 1 2

max

( )
( ) ( )

T k
w k w w w

T
−

= + −                (16) 

where w1 is the initial inertia weight, w2 is the inertia weight while the number of 
iteration reaches to the maximum, k is the current iteration algebra, and Tmax is 
the maximum evolutionary algebra. In general, when the inertia weight w1 = 0.9, 
w2 = 0.4, the algorithm performance is the best. Thus during the iteration 
process, the inertia weight decreases linearly from 0.9 to 0.4. The larger inertia 
weight at the beginning of the iteration makes the algorithm maintain a strong 
global searching ability. And the smaller inertia weight of the iteration is benefi-
cial to the algorithm for performing more accurate local search. 
C. Parameter Optimization of LSSVM Based on Particle Swarm Optimiza-

tion 
In the regression model of least squares support vector machine, the regulari-

zation parameter C and the kernel parameter δ have a great influence on the 
prediction accuracy and complexity of the model. The way to find the best regu-
larization parameter and kernel function belongs to the best model problem. In 
this paper, particle swarm optimization is adopted to optimize least squares 
support vector machine parameters. The specific steps are as follows: 
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1) Initialize the parameters of particle swarm optimization, including popula-
tion size, learning factors, the number of iterations, the initial position and speed 
of particles. 

2) The learning samples were predicted by LSSVM corresponding to each par-
ticle vector, and the predicting error of current position value of each particle 
was obtained and then used as the fitness value of each particle. 

3) The current fitness value of each particle is compared with optimal fitness 
value of the particle itself, and if it is better, the current position of the particle is 
taken as the optimal position of the particle. 

4) The optimal position fitness value of each particle is compared with the 
groups’, and if it is better, the current position of the particle is taken as the op-
timal position of the group. 

5) The inertia weights are calculated according to (16), and the velocity and 
position of particles are updated by using (14) and (15). 

6) Check if the termination condition is met, if not, return to step 2). Or else, 
end the calculation and show outputs. 

4. Predicting Model of Power Quality Steady State  
Index Based on Chaotic Theory and Lssvm 

The change of power quality steady state index is affected by many factors. For 
example, voltage deviation is related to flow of the system, power distance, wire 
diameter, reactive power capacity et al. Three-phase voltage unbalance is related 
to system planning, load distribution structure, load characteristics et al. Flicker 
is related to load starting characteristics, power grid structure parameters, reac-
tive power compensation et al. According to the monitoring data of power qual-
ity, the changing trend of power quality steady state index has certain regularity, 
showing quasi-periodic, aperiodic and chaotic characteristics. So a predicting 
model for power quality steady state index based on chaotic theory and least 
squares support vector machine (LSSVM) is proposed in this paper. The fore-
casting process is as shown in Figure 1. The specific steps are as follows: 

1) Normalize the monitoring data of power quality steady-state index. Identify 
and correct the abnormal data. 

2) According to the theory of phase space reconstruction for chaotic system, 
the improved C-C method [12] is adopted to seek the optimal embedding di-
mension m and the time delay τ. So we can then reconstruct the phase space of 
power quality steady-state index. The calculation of the maximum Laypunov 
index is worked out by means of the small-data method in order to further ex-
amine the chaotic property of power quality steady state index sequence. 

3) The original sequence under phase space reconstruction is then trained us-
ing least squares support vector machine. The regularization parameter C and 
kernel parameter δ is optimized basing on particle swarm algorithm in chapter 
B. 

4) Predict power quality steady state index and analyze the error using the 
well trained least squares support vector machine model. 
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Figure 1. Flowchart of power quality steady indicators prediction. 

5. Case Study 

This paper chooses power quality data collected from the power quality moni-
toring system of a city power grid to be the basic sample. Taking the voltage 
deviation for example, the predicting process of the power quality steady state 
index is introduced. Figure 2 is the voltage deviation time sequence obtained in 
a 220 kV substation monitoring point from January 1st, 2014 to December 31st, 
2015. Basing on above-mentioned experimental samples, we will predict the vol-
tage deviation for the next 15 days. 

The phase space reconstruction parameters of voltage deviation time series are 
calculated by the improved C-C method [12], and the results are shown in Fig-
ure 3. The improved C-C method is adopted to determine time delay τ and em-
bedding dimension m. The first local minimum of 1( )S t∆  can be as the optimal 
time delay τd and the periodic point of 1 2( ) ( )S t S t−  can be as the optimal em-
bedding window τw. According to the formula τw = (m − 1) τd, the optimal em-
bedding dimension m is got. From the Figure 3, we can know τd = 12, τw = 96 
and m = 9. 

In order to test the chaotic characteristic of the sequence, the maximum Lya-
punoy index of voltage deviation time series is calculated by the small-data me-
thod according to the obtained optimal time delay τ and embedding dimension 
m. The results are shown in Figure 4. 
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Figure 2. Time series of original voltage deviation. 

 

 
Figure 3. Improved C-C method of reconstruction parameters. 

 

 
Figure 4. Maximal Lyapunov exponent curve of voltage deviation time series. 
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In Figure 4, k is the evolution step of discrete time, y(k) is the distance loga-
rithmic mean. Figure 4 shows that the long curve before k = 200 is nearly linear, 
whose slope is the largest Lyapunov index of voltage deviation time series. Fur-
thermore, the slope of the line is 0.045 > 0, which verifies the selected voltage 
deviation time series is chaotic time series with chaos characteristic. 

According to the theory of phase space reconstruction, make time delay τ = 12 
and embedding dimension m = 9 to restructure the original 730 data, conse-
quently get 634 points which are used to be the training sample of least squares 
support vector machine. The prediction effect of least squares support vector 
machine model has a great relationship with the choice of its own parameters. So 
this paper optimizes the parameters of least squares support vector machine 
model based on particle swarm optimization introduced in chapter B. In particle 
swarm optimization model, make the population number N = 30, learning factor 
c1 = c2 =1.5, maximum generation Tmax = 300, inertia weight w1 =0.9, w2 = 0.4, 
and set the regularization parameter C ∈ [0, 500] and the kernel parameter δ ∈ 
[0, 100]. By updating the current optimal position of the particle continuously, 
the optimal parameter C = 73.157 and δ = 0.732 are obtained. 

The optimal regularization parameter C and kernel parameter δ are used in 
least squares support vector machine model to predict the voltage deviation for 
the next 15 days from January 1st to 15th, 2016. In order to verify the feasibility 
of the proposed method, the BP neural network algorithm is compared with the 
method in this paper. The results are shown in Figure 5. 

Table 1 is the prediction results of the voltage deviation based on the BP 
neural network method and the method of this paper. In order to quantify the 
accuracy of the analysis, the average relative error is introduced and its expres-
sion is as follows: 
 

 
Figure 5. Predicting results of voltage deviation. 
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Table 1. Predicting results of voltage deviation. 

Time 
Actual  
value 
(%) 

the BPNN method the proposed method 

Predicting value (%) Relative error Predicting value (%) Relative error 

01-01 4.603 5.086 10.49% 4.284 −6.93% 

01-02 5.092 4.835 −5.05% 5.258 3.26% 

01-03 4.686 4.307 −8.09% 4.504 −3.88% 

01-04 4.244 4.218 −0.61% 4.319 1.77% 

01-05 4.091 4.247 3.81% 4.155 1.56% 

01-06 4.184 4.162 0.53% 4.155 −0.69% 

01-07 4.249 4.304 1.29% 4.154 −2.24% 

01-08 4.856 4.438 −8.61% 4.540 −6.51% 

01-09 5.277 5.075 −3.83% 5.157 −2.27% 

01-10 4.412 5.251 19.02% 4.235 −4.01% 

01-11 4.166 4.556 9.36% 4.166 0 

01-12 4.276 4.434 3.70% 4.155 −2.83% 

01-13 4.186 4.408 5.30% 4.206 0.48% 

01-14 4.317 4.369 1.19% 4.273 −1.02% 

01-15 4.846 4.474 −7.68% 5.155 6.38% 

Emape - - 5.90% - 2.92% 

 

1

1 ( ) ( ) 100%
( )

n

mape
i

L i F iE
n L i=

−
= ×∑                  (17) 

It can be seen from Figure 5, the prediction results of proposed method based 
on chaotic theory and least squares support vector machine model are closer to 
the true value, and better reflect the changing trend of the voltage deviation. At 
the same time, from the Table 1, the average relative error of prediction results 
based on the proposed method is 2.97%, which is reduced by 2.92% compared 
with the BP neural network method. Therefore, the prediction accuracy has been 
improved obviously. 

According to the prediction process of voltage deviation time series, select 
power quality steady state index: total harmonic voltage distortion rate (THD), 
three-phase voltage unbalance (εu), flicker (Plt) and use the proposed method to 
predict. The predicting results are shown in Table 2. 

As it can be seen from Table 2, the predicting results of both total voltage 
harmonic distortion and three-phase voltage unbalance are close to the real val-
ue based on the proposed prediction model and their average relative error was 
about 5%. The average relative error of flicker is 9.18%. The prediction accuracy 
of each index is different, but the average relative error is controlled within 10%, 
which can meet the engineering requirements. 
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Table 2. Result of power quality steady state indicators prediction. 

Time 

THD εu Plt 

actual  
value(%) 

Predicting 
value (%) 

actual  
value(%) 

Predicting  
value (%) 

actual  
value 

Predicting 
value 

01-01 1.173 1.243 0.132 0.147 0.212 0.182 

01-02 1.104 1.150 0.180 0.158 0.191 0.191 

01-03 1.207 1.250 0.170 0.172 0.169 0.165 

01-04 1.316 1.410 0.177 0.181 0.194 0.184 

01-05 1.371 1.387 0.194 0.186 0.178 0.161 

01-06 1.342 1..343 0.202 0.183 0.196 0.201 

01-07 1.363 1.424 0.205 0.192 0.180 0.165 

01-08 1.311 1.425 0.186 0.181 0.197 0.180 

01-09 1.354 1.439 0.201 0.206 0.156 0.144 

01-10 1.289 1.329 0.196 0.191 0.156 0.173 

01-11 1.347 1.412 0.169 0.179 0.141 0.162 

01-12 1.336 1.409 0.183 0.188 0.167 0.178 

01-13 1.306 1.410 0.194 0.199 0.136 0.160 

01-14 1.326 1.420 0.183 0.172 0.173 0.177 

01-15 1.329 1.406 0.181 0.162 0.126 0.161 

Emape 5.06% 5.38% 9.18% 

6. Conclusion 

On the basis of analyzing chaotic dynamics of power quality steady state index, 
this paper establishes a power quality steady state index prediction model based 
on chaotic theory and least squares support vector machine according to the 
characteristic objectivity. This paper also optimizes parameters of least squares 
support vector machine by using particle swarm algorithm to improve the pre-
diction accuracy. This method does not consider many factors which influence 
the change of power quality steady state index directly and analysis the historical 
data of each index instead to reduce the prediction complexity and cost. 

Based on the power quality data measured in real time from the monitoring 
system of a distribution network, the model is verified. The results show that the 
proposed method can effectively predict the change trend of power quality 
steady state index series. The average relative error of index prediction was con-
trolled within 10%, which can provide valuable references for mastering the 
trend of power quality and promoting solution of power quality problems. 
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