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Abstract 

 
This research note presents a very simple proof of the interesting fact that the set Q of rationale numbers is 

still countably infinite as is the set of natural and integer numbers. The proof is based on several innovative 

ideas and neither relies on Cantor’s well-known diagonalization approach nor on the non-trivial Cantor- 

Schroeder-Bernstein Theorem. 

In addition, we present a new proposal for a simple injective function f: QZ, which allows one to encode 

rationals in a highly efficient manner and at the same time it can be understood much more easily (even by 

non-mathematicians). Moreover, also the inverse function f 
-1

 can be derived in an extremely simple manner. 

Nevertheless, the growth of length is only logarithmic if we compare the resulting length of f(r=p/q) with the 

value of p, while the length of q has no impact at all on the length of f (r). Our approach also allows us to 

introduce a total ordering for the set of rationale numbers in a straight-forward manner. 

 

 

Keywords: Cardinality of rationals; elementary injective mapping from Q to Z; simplification of Cantor’s 

proof; total-ordering of rationals. 
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1 Proof of Countability of the Set Q 
 
Typically, the fact that the set of rationale numbers has countably infinite (for a definition of this term see [1]) 

elements is proven by means of constructing a bijective mapping between the set Q of rationale numbers and the 

set N of natural numbers or the set Z of integers, (cf. for example Cantor’s method (called: ”diagonalization 

method” or ”zig-zag method”), see, e.g., [2] and [3]). An alternate proof of the countability of the set Q can be 

achieved by defining two injective mappings f: QZ as well as a mapping g: ZQ in combination with the 

non-trivial Cantor-Schroeder-Bernstein Theorem [4]. By the way, Georg Cantor defined and compared 

cardinalities as early as in 1878 [5]. Nowadays, mathematicians consider the general topic of “infinite sets” in 

their research [6]. 

 
In this paper we want to present a proof of the countability of Q which is significantly simpler as it requires only 

one injective mapping, namely f: QZ. Our proof makes use of the very helpful fact that by finding an injective 

mapping f from Q into Z we easily see that f: Qf(Q) is even a bijection between the sets Q and f(Q)={f(x)| 

xQ}. The idea that finding an injective mapping from Q to N (instead of a bijective mapping between Q and 

Z) for proving that Q is countably infinite has already been published recently [7]. 

 
Numerous examples for injective and/or bijective mappings between Q and Z which were proposed up to now, 

are summarized, e.g., in [8]. However, to the best of our knowledge, all injective mappingsf: QZ proposed 

until now possess serious weaknesses, like e.g. the injective mapping f, which encodes a ratio r in such a way 

that the value of the numerator implies a corresponding number of ”8”-digits (if r>0) or of ”7”-digits (if r<0) 

followed by ”1”-digits according to the value of the denominator. Example: 3/5 is encoded by 88811111. 

Though, here, encoding and decoding are really straight-forward, we realize easily that the length of the 

resulting integer number is growing exponentially with the lengths of numerator/ denominator of the ratio being 

encoded! Despite this quite horrible fact, renowned mathematicians, when this author consulted them (cf. [9]) 

argued that this mapping function f is considered by them as being the best of the proposals published up to 

now.  

 
Consulting further mathematicians (all renowned experts in Number/Set Theory) led to the result that, from their 

point of view, the simplest injective function published up to now is:to encode a ratio r=p/q with p=p1p2…pn, 

q=q1q2…qm by mapping r onto the integer number f(r)=(p1p2…pnXq1q2…qm)11, where we have to view each 

digit as being in Base 11.  

 
Example: r=(3)10/(5)10 implies f(r)=(3X5)11, where X denotes (10)10.  

 
Here, the problem of ”length explosion” is  clearly fixed, but leaving the conventional decimal system and 

making use of the Base 11 number system (unknown to most non-mathematicians) seems to be quite 

unacceptable. An additional problem is the considerably high expenditure which is required to achieve both the 

encoding and the decoding (e.g., finding the ratio r to a given f(r) typically will be very tedious – even a 

computer could be required for treating large numbers). 

 
This is why we have searched for an injective mappingf: QZ, which does not possess the disadvantages of the 

corresponding proposals for f,published up to now. In particular, our new proposal should satisfy the two 

following requirements: 

 
R1. The output (i.e. the length of f(r)) should not become much longer than the input (i.e. the lengths of 

numerator and of denominator of r). 

 
R2. Both, the encoding function f as well as the decoding (i.e. the inverse function f 

-1
) should be so simple that 

they can be understood extremely easily – even by non-mathematicians. 

 

Theorem 1. The setQcontains a countably infinite number of elements. 

 
Proof of Theorem 1. 
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Step 1: 

 

As a first fundamental step of the proof let us construct an injective mapping f: QZ, which maps an 

arbitrary rationale number b in a unique manner onto an integer number z = f(b) Z. In particular, the 

function f should satisfy all our requirements R1 and R2 (cf. above). Indeed, we were able to find such 

a function which will be presented now. 

 

So, let us consider an element bQ, arbitrarily chosen and then fixed, b0. As b does represent a ratio, 

we can write b in the following way b = sgn(b) , where p = p p p …p denotes the numerator   1   2   

3 n (consisting of n digits pi, i=1,2,3,…,n) and q = q1q2q3…qm denotes the denominator 

(consisting of m digits) and sgn indicates the sign, where sgn(x) = 0, for x=0 and sgn(x) = x/|x|, for x0. 

 

To achieve a unique encoding of a rationale number (i.e. a ratio) we suppose, without loss of 

generality, that p and q have no common divisor larger than 1 and are non-negative. First, we assume 

b0 and we construct f by using an auxiliary number hb, which starts with exactly n “1“s, n 1. So, the 

number of “1“s indicates the length of the numerator (also n). The “1“s at the beginning of hb are 

followed by just one ”0”, which is then followed by the n digits which constitute the numerator p and 

these digits are then directly followed by the m digits corresponding to the denominator q. 

 

To summarize,hb has the following form: 

 

hb = 111…10p1p2p3 … pnq1q2q3 … qm. 

 

Based on our auxiliary number hb, for arbitrarily chosen elementsbQ, b0, we now can directly obtain the 

function f we are looking for. The case b=0 can be covered in a straight-forward way by defining f(0)=0. So, the 

complete definition of fis: 

 

hb,  for b>0. 

f(b) =   0,  0, for b=0. 

hb,  for b<0. 

 

 

It is very easy to determine the original number b being mapped on a given number f(b). For example, if f(b)=0 

we can conclude b=0. In all other cases, we obtain hb by means of sgn(f(b)) f(b) = hb, i.e., we obtain hb easily 

by just eliminating the sign of f(b). By knowing hb we know the number of digits of the numerator (indicated by 

the number of “1“s at the beginning of hb) and by looking at the n successive digits following the first “0” of hb 

we know the complete numerator. The rest of the digits of hb represent the denominator. The sign of b is 

identical to the one of f(b). 

 

Therefore, f is a (very simple) injective mapping of Q onto Z, which implies:ZQ. 

 

Step 2: 

 

We see that f resp. f 
-1

 (the inverse of function f) represent a bijection between Q and f(Q)={f(x) 

xQ}, i.e. f: Qf(Q) and f 
-1

: f(Q) Q. Therefore, Q and f(Q) possess the same cardinality. 

 

Step 3: 

 

The cardinality off(Q) is countably infinite because it contains an infinite number of elements and it is a subset 

of a set containing a countably infinite number of elements (namely the set  Z). Therefore, because of the 

existing bijective mapping between Q and f(Q), it is proven that Q is countably infinite, too. 

 

q.e.d. 

 

It is quite remarkable that our proof of Theorem 1 can easily be generalized to the case that we replace Q by an 

arbitrary set X possessing an infinite number of elements and the set Z is replaced by a set Y which we assume 
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to possess a countably infinite number of elements. If we still are able to provide an injective mapping f: X  

Y, an argumentation according to the proof of Theorem1, still proves in this generalized case, too, that X 

possesses a countably infinite number of elements – a rather general result, indeed. 

 

Lemma 1. Let M be a set possessing a countably infinite number of elements and let Ms be an arbitrary subset 

of M with an infinite number of elements. Then, Ms also possesses a countably infinite number of elements. 

 

Proof of Lemma 1. 

 

Let the set M possess a countably infinite number of elements. Then, the elements of M are countable (per 

definitionem). Every (strict) subset of Ms M results by eliminating some of the elements of M. Anyway, the 

elements of Ms still remain countable. Therefore, Ms can only become a finite set or if the set Ms is assumed to 

possess an infinite number of elements (cf. assumption in Lemma 1) it is proven that Ms is a countably infinite 

set. 

 

q.e.d. 

 

Remark: The astonishing simplicity of the proof of this Lemma results from the strong assumption underlying 

Lemma 1, namely the set M is assumed to be countably infinite. If, however, M would be allowed to be 

uncountably infinite, a subset Ms M containing an infinite number of elements, in principle, could be either 

countably or uncountably infinite. Proving that Ms and M still remain equipotent (having the same cardinality), 

then will require additional strong assumptions and it will become much more complicated. 

 

Let us now give two examples to illustrate how the original number b can be determined for a given f(b). 

 

Example 1. For f(b) = 11025411 we observe that hb = 11025411. Thus, the numerator has two digits because hb 

has two ”1“s in front of the first ”0”. So, it is easy to see that hb = 11025411corresponds to ratio b = 25/411. 

 

 

 

 

 

 

Example 2. For f(b) = 1025411 we observe that hb = 1025411. Thus, the numerator now has only one digit 

because hb has only a single ”1“ in front of the first ”0”. So, it is easy to see that hb = 1025411 corresponds to 

ratio b = 2/5411. 

 

 

 

 

 

 

Some readers may be slightly concerned by the fact that integers resulting from the mapping f(b) of the rationalb 

= 
 

 
 onto Z might become quite large numbers (e.g., if n, i.e. the number of digits of p, is rather large). Anyway, 

there exists a straight-forward solution to eliminate this potential problem. We propose to use the notation np1 

… pnq1 … qm to represent the integer 11…10p1 … pnq1 … qm (n times digit ”1” at the beginning of this integer) 

and, therefore, the representation of f(b) becomes much more compact for large values of n. Already for n>2 our 

proposed notation will reduce the number of symbols required to represent f(b), namely the symbols ,  , and 

the digits which are used. Encoding now is even significantly less cumbersome than before because the only 

(trivial) task remaining is to determine n, i.e. the length of p. And, decoding f(b) to determine b is completely 

trivial now. 

 

Example 3.  Using the simplifying, new notation for b = 
   

    
  we obtain f(b) =31231234. 

 

Remark: Besides, the design of the injective function f represents a nice example for the fact that different 

scientific disciplines (here, Computer Science and Mathematics) can enrich each other. Due to his long-term 

Boundary between 

numerator and denominator 

Boundary between 

numerator and denominator 
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experience as a professor of Computer Science focusing on the scientific areas of Data Communication and 

Computer Networking the author became acquainted with an important approach to efficiently organize the 

communication between a sender S and a receiver R which exchange signals being interpreted by the receiver as 

a sequence of ”0”- and ”1”-bits. If no need for data exchange exists the sender just sends ”1”-bits only. In order 

to structure the communication between S and R, the sender terminates the sequence of ”1”-bits being sent to R 

and is sending a ”0”-bit. The receipt of a ”0”-bit after a (perhaps long) sequence of ”1”-bits tells R that, directly 

after receiving the ”0”-bit, receipt of the message to be sent from S to R now starts. Similar to this example from 

Data Communication the ”0”-digit directly after a sequence of ”1”-digits indicates in the encoding represented 

by f, that the digits of the numerator are beginning after this first ”0”-digit. We see that a principle which is 

successfully applied in Computer Science can be successfully used in Mathematics, too. 

 

For details regarding the algorithm mentioned to organize the (asynchronous) data transmission between two 

interconnected computers within a computer network, the interested reader is referred to [10] (cf. asynchronous 

transmission in Section 6.1, pp. 182-185). 
 

2 Representation of the Set of Rationale Numbers by a Totally-ordered 

Set 
 
Based on the mapping function f, introduced by us, we can obtain a total-ordering of the set of rationale 

numbers, whose common divisor is not larger than 1. For this purpose, we define an ordering relation < (in 

words “smaller after being encoded“) which has the property, that either bA<bB or bB<bA for two arbitrary 

ratios bAQ and bBQ, bAbB. To obtain the solution (regarding the relation <) we compare the integer 

numbers f(bA) and f(bB). 

 

We now define the ordering relation as follows: 

 

 bA<bB f(bA) <f(bB) 

 bB<bA f(bB) <f(bA) . 

 

Therefore, the relation <implies atotalordering for the set of rationalenumbers for which numerator and 

denominator do not possess a common divisor larger than 1, becausebAbB implies that f(bA)f(bB) also holds 

and thus one of both ratios (after being encoded) is smaller than the other. 

 

The assumption that the ratios being compared possess numerator and denominator without a common divisor 

larger than 1 is required to make sure that there is a unique result when we order both ratios. As an example we 

choose bA= 
 

  
 and bB=

 

  
. Then, we get bA<bB because 10110 < 10310. However, if we represent bA by bA= 

  

    
, 

we suddenly would get bB<bA because 10310 < 11010100. Therefore, we assume that 
 

  
 for which numerator 

and denominator do not possess a common divisor larger than 1 does represent the ratio bA with the unique 

consequence bA<bB. 

 

3 Inversion of the Injective Mapping on to a Subset of the Integers 
 
Unlike a lot of other injective functions f: QZ, suggested up to now, for our function f it is extremely easy to 

characterize the elements of f(Q). To demonstrate this shortly, let Z0* := Z*  {0}, where Z* comprises that set 

of integer numbers which consists of the following numbers xZ 

 

x = +/- x1x2 …xrxr+1xr+2…x2r+1x2r+2… xs , 

 

wherer  1, xk = 1 for kr, xr+1 = 0, xr+2 0, x2r+20 and s 2r+2.  

 

Moreover, we assume that p=xr+2…x2r+1 and q=x2r+2… xs do not possess a common divisor larger than 1. We 

easily see that f(Q) = Z0*. So, f can be used to obtain a bijective mapping between Q and Z0*.  
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Example 4.  We choose x = -11107891234 as an arbitrary element of Z*. Then x, in a unique manner is mapped 

onto the rational -789/1234. 

 
Example 5.  We now choose an arbitrary ratio, e.g., b = 12/347. Then, in a unique manner,b is mapped onto the 

integer numberx = 11012347. We observe thatxZ*, because all conditions are fulfilled which are required for 

the elements of set Z*, i.e. in particular: r=21, xk=1 for k2,  x3=0, x4=10, x6=30 and s=8  6=2r+2. 

 

4 Conclusion 
 
A lot of people consider mathematics to represent a rather hard discipline which makes good didactics in 

Mathematics extremely important [11,12]. Therefore, in particular from a didactic point of view, it seems to be 

highly desirable to search for proofs of complicated mathematical facts, which are as simple as possible to be 

understood (as long as they are completely correct). This has been one of the major motivations underlying this 

paper. 
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