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Distance sampling with line transect method has been applied by many researchers to monitor and 
observe varied animals and plants with the aim to estimating population density and/or abundance. The 
detection and detectabilities of plants and animals with line transect methodology appear to be 
described as seen in the application software DISTANCE by some four specific models or mathematical 
functions. This study has established the need for an expansion of the functional space of the 
application software of the distance sampling with line transect application to cater for differences in 
species with different biological characteristics, and revealed that the detection of plants and animals 
of all species of different kinds can be described differently with distinct functions, as differences in 
biological characteristics of different species can be manifested in their detections and detectabilities. 
 
Key words: DISTANCE, distance sampling, detectability, line transect method, Mole National Park (MNP). 

 
 
INTRODUCTION 
 
Line transect primarily has had a relatively short history. 
The earliest attempts to use line transect in detecting 
animals and estimating their abundance date back to the 
1930’s (Buckland et al., 2001), and the first line transect 
estimator with a rigorous mathematical basis was due to 
Hayne (1949). Nearly 20 years later, Gates (1968) and 
Eberhardt (1968) made important contributions to the 
development of line transect sampling methodology. 
Eberhardt’s (1968)  work    was    more  conceptual    and 

attempted to provide a class of models that were robust 
 to the differing detection process. 

Line transect methodology involves a process wherein  
an observer traverses through a line to observe units of 
interest on both left and right of the line whilst taking 
recordings of the distances and number of units of 
interests observed. Observation of objects of interest can 
either be perpendicular or through an angle theta as 
Figure 1 illustrates. Burnham et al. (1976) developed a 
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Figure 1. Angular and Perpendicular observations along a single transect line. 

 
 
 
general theory needed for reliable estimation. Anderson 
and Pospahala (1970) also used polynomials to fit the 
distance data, but did not provide an underlying theory. 
The field experiments of Robinette et al. (1974) were 
important in providing data sets with known abundance, 
on which estimation methods could be tested. Sen et al. 
(1974) gave an erroneous formulation. Burnham and 
Anderson (1976) corrected this formulation, provided a 
general framework for both parametric and 
nonparametric method and applied to data that were 
either grouped or ungrouped and truncated or un-
truncated.  

In conventional line transect sampling, all animals on 
the line are assumed to have a certain detection 
probability which falls off steadily as distances increase 
(Buckland et al., 2015). An established assumption of this 
method is that the probability of detection of an object 
depends solely on its perpendicular distance from the 
transect line. However, many variables such as visibility, 
time of visits, weather, and availability of units of interest 
in the study region, among others may affect the 
detection probability. These variables however can be 
factored into the model wherein detections can appear to 
be conditioned on them with distances of detections as 
suggested by Marques et al. (2007). The inclusion of 
these may appear to influence either the shape or the 
scale or both of the detection function identified. 

Buckland et al. (1993) provided an extensive review of 
distance sampling design and requirements with line 
transect methodology while Laake et al. (1993) developed 
the software DISTANCE allowing the computation of the 
density and abundance parameters based on some 
specified mathematical functions. The key elements 
presented by Buckland et al. (1993) relied on the 
assumption that animals will remain undetected in 
distance sampling and that the detectability decreases 
with increasing the distance from the line. The 
fundamental concept central to the theory is the detection 
function      where           . That is, at distance 
zero,  all  the  animals  on  the  line  are  detected  with   

a probability of 1. To derive robust estimates, a minimum 
of 60 to 80 observations are required across the study 
area (Buckland et al., 1993). 

Line transect sampling has been developed along 
rigorous statistical inference principles. Parametric 
approaches to modelling      were predominant, with the 
notable exception of Anderson and Pospahala (1970), 
who rather inadvertently introduced some of the basic 
ideas that underlie a non-parametric or semi-parametric 
approach to the analysis of line transect data. Emlen 
(1971) proposed an ad hoc method that found use in 
Avian studies. A general model structure for line 
transects on perpendicular distances was presented by 
Seber (1986). For an arbitrary detection function, Seber 
gave the probability distribution of the distances 
             and the general form of the estimator of 

animal density  . This development was left at the 
conceptual stage and not pursued to the final step of a 
workable general approach for deriving line transect 
estimators. 

Burnham and Anderson (1980) pursued the general 
formulation of line transect sampling and gave a basis for 
the general construction of line transect estimators. They 

developed the general result  ̂     ̂     ⁄ , wherein the 

parameter      is a well-defined function of the distance 
data. The key problem of line transect data analysis was 
seen to be the modeling of      or      and the 
subsequent estimation of       
 
 

PROBLEM STATEMENT 
 

The detection and detectabilities of plants and animals of 
all species of different kinds are seen generally to be 
described by the Half Normal, the Uniform, the Negative 
Exponential, or the Hazard Rate distributions as specified 
in the DISTANCE software. However differences in 
biological characteristics of different species of plants and 
animals including mammals of all types cannot be 
underestimated. This  study  is  thus  aimed  at  exploring 



 
 
 
 
other potential functions that can equally play similar or 
better roles as those generally employed in describing 
and modeling detectabilities of units of interest under 
investigation. 
 
 
Research questions 
 
i) Are all animals being described by same distributional 
forms as those specified in DISTANCE software? 
ii) Do different species of animals and plants possess 
different characteristics that can be described by different 
functions in detections, monitoring and conservation? 
 
 
Objectives 
 
i) To identify an appropriate statistical distribution that 
best describes detections of units of interest under study. 
ii) To enhance detectability estimation process of rare 
and elusive events in the distance sampling realm. 
iii) To perform a Bayesian analysis of detectability of units 
of interest conditional on perpendicular distances and 
other identified covariates in the study area. 
iv) To provide appropriate detections periods of units 
under investigation to visitors or tourists and researchers 
who intend to visit the Mole National Park for the 
observation of units under study. 
 
 
METHODS 
 
Study area 
 
The study area is located in the West Gonja District of Northern 
Ghana and about 184 km from the Northern Regional capital of 
Tamale. It covers a total area of 4,755 km2 of the West Gonja 
District which inhabits several plants and animal species whose 
densities are of concern to wildlife management and conservation. 

Briggs (2007) revealed that the MNP represents Ghana’s largest 
wildlife refuge which is located northwest Ghana on grassland 
savannah and riparian ecosystems at an elevation of 150 m, with 
sharp escarpment forming the southern boundary of the park. The 
park’s entrance is reached through the nearby town of Larabanga. 
The Lovi and Mole Rivers are ephemeral rivers flowing through the 
park, leaving behind only drinking holes during the long dry season 
(Bowell et al., 1993). This area of Ghana as seen in Figure 1 
receives over 1000 mm per year of rainfall. 

 
 
Survey design and transect selection 

 
The sampling design in a line transect study is the procedure by 
which the transect locations are selected. Desired properties of 
unbiasedness of estimators will be based as much as possible on 
the design rather than on assumption about the population 
(Thompson, 2002). 

The study employs a direct method of observation along transect 
lines placed in the study area. Transect lines are identified by 
employing simple and systematic sampling techniques. Direct 
methods are based on actual observation of the species in question 
(large   mammals).  Visibility   and   detectability  can  often  pose  a 
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problem when surveying terrestrial species; thus, surveys relying on 
signs are ideal for estimating mammal abundance and habitat use 
(Hayward et al., 2005; Sadlier et al., 2004; Sullivan et al., 2002), 
calling for indirect methods of detection as a means to establishing 
the signs of animal presence. 

To select the appropriate transects for the study, a combination 
of   both  probability   and   non-probability  sampling  designs  were  
employed in order to improve data quality and analysis. These 
designs included stratification, convenient, and systematic, 
respectively. Due to the timing of the research and the nature of the 
study area, it was decided to stratify study area into two major 
strata (a stratum with and without water bodies) within which 
separate designs were employed in transect placement in order to 
optimize detections and improve precision. 

Conveniently identifying a random start line in each stratum, a 
combination of both continuous systematic design and discrete 
parallel transect lines were placed, respectively in the strata so as 
to avoid discontinuation in detection from one transect to the other 
whilst ensuring an even spatial distribution of lines in surveyed 
region. Thompson (2002) indicates that estimates from n transects 
are more preferred to those based on single transects. In view of 
the nature of the study area coupled with resource constraints, a 
total effort of 4 km was estimated for coverage per day in the study 
area, for a period of 20 days, spanning 10 months, for at least 2 
days per every visit, to traverse through a sample of ten (10) 
transects of equal lengths in the identified strata using a major route 
that cuts across the study area as a base. 

A route perpendicular to the baseline was selected conveniently 
in each stratum and represented as the first transects and 
considered as a random start samples from which the remaining 
eight lines of non-overlapping and widely placed apart were 
systematically positioned to cover and include specific locations 
with prior knowledge of having high concentrations of the species of 
interest in the study area as shown in Figures 2a and b. 
 
 
Data type 
 
Here, both primary and secondary data were considered. Primary 
data was gathered within the region of study involving investigator 
and some supporting staff. Data gathered included both 
perpendicular distances and the number of Elephants, Hartebeests, 
Waterbucks and Warthogs detected at various locations of the 
study region using 10 conveniently and systematically placed 
transect lines within two stratified locations. Existing information 
from management of the MNP about the units of interest within the 
study area constituted the secondary data.  

A principle of data augmentation was adopted to cater for units 
undetected but present in the study region and statistical packages 
such as the Distance, Minitab, R, Easy fit, Open Bugs to mention 
just a few were extensively used in both data exploration and 
modelling process involved in this study. 
 
 

ANALYSIS AND DISCUSSION 
 

The probability of detection of a unit of interest assumes 
a major component of the analysis of this thesis. The 
distance data measured are empirically categorized into 
different bins of varied sizes to determine the best data 
grouping in the exploration stage. This also included 
histogram plots of distance data to check for evasiveness, 
random movement, heaping, outliers and or truncation 
distance as shown in Figure 3(a, b, c and d). 

Figure 3(a, b, c, and d) represent histogram plots of 
observed species in the MNP at different perpendicular
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Figure 2. (a) Continuous zigzag lines placed in Stratum 1 (b) Systematically parallel lines placed in Stratum 2. 

 
 
 

distances relative to the transect lines. In these plots, it is 
evident that ability to observe units of interest decreases 
with increasing distances. The plots also reflect 
differences in detection abilities among the four different 
species as a reflection of differences in biological 
characteristics. 
 
 
Possible key functions and series expansions with 
their formulations in the DISTANCE software 
 

 
 
With the application of these, where in detections are 
conditioned on perpendicular distances only, it is 
observed that the detection of elephants in the MNP is 
described by the hazard function based on the lowest 
AIC value. The use of the AIC is due to the fact that it 
contains a penalty term to penalize functions with more 
parameters so that over parameterization will be checked. 
The detectability function appears in the form: 
 
           [            ]              (1) 
 
Equation 1 is found to be represented mathematically as: 
 

   [    ⁄    ]                (2) 
 
with the scale parameter                       
 and the shape parameter                  
       respectively. Thus the general form of the model is 
mathematically expressed as: 

         [      ⁄      ]              (3) 
 
Conditioning on both distance and other identified 
covariates also suggest a hazard rate key function with 
no adjustment term as the best model with minimum AIC 
= 299.5287. The detectability function assumes the form: 
                                            (4) 
 
where the shape parameter             and the scale 

parameter                 ((    )  (    )  

(    )) with estimated values                 

                    and               where 
s=16.34 and 
 

            (           ⁄        )           (5) 

 
Comparing the two conditional cases, it can be observed 
that the covariates included in the Hazard rate model 
have increased both the scale and shape parameters 
from 6.4 to about 16.34 and 1.5 to about 2.507, 
respectively. 
 
 
Distribution identification for distances of detected 
elephants in the MNP 
 
To identify the distribution, observed data is assumed to 
follow or best fit the study and explores several 
probability plots to obtain a fit that satisfies the following 
as reflected in Figure 3: 
 
i) The plotted points roughly forming or following a 

straight line and appears close to the fitted distribution 
line and 

 
ii) Produces a minimum Anderson-Darling statistic with

 
                                   (a)                                                                                (b) 

Key function  Formula    Series Expansion  Formula 
 

Uniform key       
 

𝐰
     Cosine series            𝐚𝐣

𝐦
𝐣= 𝐜𝐨𝐬⁡(𝐣𝛑 𝐬) 

 

Half Normal key    (    𝛔 ⁄ )    Simple polynomial    𝐚𝐣
𝐦
𝐣=  𝐬

 𝐣
 

 

Hazard Rate key    [   𝛔⁄   𝐛]       Hermite polynomial    𝐚𝐣
𝐦
𝐣= 𝐇 𝐣( 𝐬) 

 

Negative Exponential        𝐚   
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Figure 3. Histogram plots of observed perpendicular distances of (a) detected elephants (b) Warthogs (c) detected hartebeests (d) waterbucks. 
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Figure 4. Map of Ghana with location of the Mole National Park. 

 
 
 

 
 

Figure 5. Plots of identified probability distributions of distances of detected elephants. 

 
 
 
an associated probability greater than the selected 
significant level as observed in Figure 4. 

In Figure 5, it can be observed that the Exponential, the 
Gamma and Weibull appear somewhat good to explaining 
the distribution of the elephant observations in the Mole 
National   Park.  The   pdf   plots  of   these  functions  are 

represented in Figure 5. 
 
 
Test of goodness-of-fit of the identified distributions 
 
In  Figure 6,  the  observed  distances  of  the  detected
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Figure 6. pdf plot of the most three important distributions of the elephant data. 
 
 
 

Table 1. The Weibull distribution. 
 

Kolmogorov-Smirnov 

Sample Size 111 

Statistic 0.07446 

P-Value 0.54461 

Rank 11 

α 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.10184 0.11608 0.1289 0.14408 0.15462 

Reject? No No No No No 
 

Anderson-Darling 

Sample Size 111 

Statistic 0.85124 

Rank 10 

Critical Value 1.3749 1.9286 2.5018 3.2892 3.9074 

Reject? No No No No No 
 

Chi-Squared 

Degree of Freedom 6 

Statistic 4.8843 

P-Value 0.55874 

Rank 11 

Critical Value 8.5581 10.645 12.592 15.033 16.812 

Reject? No No No No No 
 
 
 

elephants has clearly shown in the plots not to follow the 
normal distribution. It appears to somehow fit the Gamma 
and Weibull distributions. Even though the plotted points 
of the Exponential distribution appears to form a straight 
line, some points fell outside the confidence level. The 
smaller Anderson-Darling statistic of the Weibull with its 
greater probability appears more favorable to the 

Gamma. Figure 5 reveals that the three identified 
distributions that best explain the distributions of 
elephants in the MNP all indicate a decreasing probability 
of detection of units as distance increases and satisfies 
basic assumptions of distance sampling. 

From the goodness-of-test results as revealed in 
Tables 1, 2 and 3, it is evident that the Weibull

Probability Density Function

Histogram Exponential Gamma Weibull

x

120100806040200

f(x
)

0.64

0.56

0.48

0.4

0.32

0.24

0.16

0.08

0
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Table 2. The Exponential distribution. 
 

Kolmogorov-Smirnov 

Sample Size 111 

Statistic 0.12223 

P-Value 0.06656 

Rank 26 

α 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.10184 0.11608 0.1289 0.14408 0.15462 

Reject? Yes Yes No No No 
 

Anderson-Darling 

Sample Size 111 

Statistic 2.6398 

Rank 17 

Critical Value 1.3749 1.9286 2.5018 3.2892 3.9074 

Reject? Yes Yes Yes No No 
 

Chi-Squared 

Degree of Freedom 6 

Statistic 9.2302 

P-Value 0.16104 

Rank 22 

Critical Value 8.5581 10.645 12.592 15.033 16.812 

Reject? Yes No No No No 

 
 
 

Table 3. The Gamma distribution. 
 

Kolmogorov-Smirnov 

Sample Size 111 

Statistic 0.09289 

P-Value 0.27612 

Rank 19 

α 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.10184 0.11608 0.1289 0.14408 0.15462 

Reject? No No No No No 
 

Anderson-Darling 

Critical Value 1.3749 1.9286 2.5018 3.2892 3.9074 

Reject? No No No No No 
 

Chi-Squared 

Degree of Freedom 6 

Statistic 14.511 

P-Value 0.02442 

Rank 27 

Critical Value 8.5581 10.645 12.592 15.033 16.812 

Reject? Yes Yes Yes No No 

 
 
 

distribution actually fits the elephant data well as 
hypothesis confirmed that there exists no evidence to 
reject the statement that the  Weibull  distribution  fits  the 

distance data better at all levels of significance.  
Figure 7 represent a simulated observation 

whichappears almost  in  the same form  in shape as that
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Figure 7. Simulated observation with the Weibull distribution. 

 
 
 
of the identified Weibull of the observed elephants in the 
MNP. This confirms that any random observation over 
space and time within any region of study of the elephant 
species can be explained by the Weibull function. 
 
 
Explored probability distributions of other observed 
mammals in the MNP 
 
Figure 8 demonstrates combined plots of all possible 
functions capable of explaining the distributions of 
theHartebeests, Waterbucks and Warthogs, respectively 
in the Mole National Park of Ghana. Testing for the best 
appropriate distribution using the Anderson-Darling, the 
Chi-square and the Kolmogorov statistics as previously 
observed, it was found that different functions appear to 
distinctively describe individual species. The Hartebeests 
and Waterbuck detections however appear to be 
described by the 3p-Weibull distribution whereas that of 
the warthogs fits well in the Johnson SB distribution 
which is assumed to follow the normal distribution after 
some transformation process. 
 
 
Regression analysis 
 

This statistical approach is adopted to determine or 
describe  the  relationship  between  a  response variable 

and one or more explanatory variables defined as 
covariates in the context of this study. With an assumption 
of linearity and dichotomous nature of this variable of 
interest, the regression took the approach of the general 
regression form to determine how detection of objects 
can be influenced by distances at various factor level 
combinations of the covariates. 
 
 
Analysis of un-augmented observation of elephant 
data 
 

The regression equation as earlier indicated exhibits the 
relationship between cluster size (number of detections) 
conditional on distance only. As observed in the equation, 
as distances increases, detection decreases and for 
every unit increase in distance, ability to detect is 
decreased by about 0.5%. In this model, only about 3% 
of the variability is explained by the presence of the 
predictor. The constant value in the regression only 
exhibits statistical significance at 95% level of confidence 
as Table 4 reveals. The analysis of variance predicts that 
there is no statistical evidence to suggest that the 
detection of elephants within the survey area is actually 
related to the distances at which detection can occur. 

With inclusion of other categorical predictors, ability to 
detect is assumed to be conditional on distance, and the 
other     categorical      variables      provided     separate
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Figure 8. pdf plots of possible functions of the observed Hartebeests, Waterbucks and 
Warthogs. 

 
 
Figure 8a: Plots of observed Warthogs. 

 

 
 
Figure 8b: Plots of observed Hartebeests 

 

 
 
Figure 8c:  Plots of Observed Waterbucks 
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Table 4. Coefficients of un-augmented analysis. 
 

Term Coef SE Coef T P 95% CI VIF 

Constant 1.71684 0.124493 13.7906 0.000 (1.46835, 1.96533)  

Distance -0.00479 0.003590 -1.3354 0.186 (-0.01196, 0.00237) 1 
 

Regression equation:                                    
Summary of model: S = 0.785451, R-Sq = 2.59%, R-Sq(adj) = 1.14%, PRESS = 43.8207; R-Sq(pred) = -3.27%. 

 
 
 

Table 5. Coefficients of continuous and categorical predictors combined. 
 

Term Coef SE Coef T P 95% CI VIF 

Constant 1.45859 0.232167 6.28248 0.000 ( 0.99350, 1.92367)  

Distance -0.00572 0.003774 -1.51459 0.135 (-0.01328, 0.00184) 1.11963 
       

Transect       

1 -0.05202 0.235775 -0.22062 0.826 (-0.52433, 0.42030) 2.37410 

2 -0.12521 0.297361 -0.42108 0.675 (-0.72090, 0.47047) 2.82910 

3 -0.10434 0.319820 -0.32624 0.745 (-0.74501, 0.53634) 3.07293 

4 0.56585 0.320043 1.76805 0.082 (-0.07527, 1.20698) 3.07721 

5 -0.73617 0.712195 -1.03367 0.306 (-2.16287, 0.69052) 9.92545 

6 0.11741 0.260315 0.45104 0.654 (-0.40406, 0.63889) 2.54558 

7 0.37943 0.376646 1.00740 0.318 (-0.37508, 1.13395) 3.68783 

8 0.07337 0.374763 0.19577 0.845 (-0.67737, 0.82411) 3.65104 

9 -0.38696 0.378675 -1.02187 0.311 (-1.14553, 0.37162) 4.02123 

Session 1 0.22625 0.135681 1.66752 0.101 (-0.04555, 0.49805) 1.48653 

Season  1 0.11488 0.173759 0.66113 0.511 (-0.23320, 0.46296) 1.55249 
 

Regression equations:  
 
Summary of model: S = 0.780252; R-Sq = 19.66%; R-Sq(adj) = 2.44%. 

 
 
 
regression equations for each level of each categorical 
variable in the model as indicated Table 5 wherein more 
units are likely to be detected at factor combination 4, 1, 
1 for transect, session and season, respectively which 
exhibits statistically significance at not less than 10% 
level of significance as seen in Table 5. With this 
adjustment based on other categorical predictors, more 
of the variations appear to be explained by the model 
than their nonexistence as seen in the values of the R-Sq 
with detections made at transect line 4 indicating some 
statistical significance at the 1% significance level. There 
is also a change in the value of the S statistic from S = 
0.785451 to S = 0.780252, indicating an improvement in 
the model with the inclusion of the categorical predictors 
and a greater reduction in ability to detect per every unit 
increase in distance (from 0.0047948 to about 
0.00571612). The inclusion of the categorical predictors 
has also resulted in an increase of the Durbin-Watson 
Statistic from 2.12984 to 2.25769. The S statistic 

represents the standard distance that data values fall 
from the regression line and for a given equation, the 
lower the S, the better the performance of the model in 
predictions. 
 
 

Regression analysis of augmented observation  
 
Augmentation is a process of data recording involving 
more than one species of observed units whilst adjusting 
for unobserved units of interest over space and time. In 
augmentation, it is assumed that if a particular species is 
observed at a particular distance in time T, then there 
exist same number of other species that appear 
undetected at a different location beyond the point where 
detections of one particular species is recorded. In 
distance sampling, a unit may appear detected or not 
with unobserved units not signaling total absence at that 
particular time. Augmentation thus allows all unobserved

Transect    Session     Season 
      1           1              1           Cluster size = 1.7477 - 0.00571612 distance 
      3              2              2           Cluster size = 1.01312 - 0.00571612 distance 
      4              1              1           Cluster size = 2.36557 - 0.00571612 distance 
     10             2               2          Cluster size = 1.38609 - 0.00571612 distance 
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Table 6. Coefficients of un-augmented analysis. 
 

Term Coef SE Coef T P VIF 

Constant 1.01019 0.0002805 3601.36 0.000  

x -0.00050 0.0000001 -3499.43 0.000 1 
 

Regression equations:                                      
Summary of model: S = 0.00292523; R-Sq = 99.98%; R-Sq(adj) = 99.98%; PRESS = 0.0172989; R-Sq(pred) = 99.98%. 

 
 
 
 units to be catered for in data recording process. 

Table 6 confirms that both constant and coefficient 
appear significant with the augmentation process, with a 
percentage of about 99.98 of variation being explained by 
the inclusion of the predictor variable as against 2.59% 
with the un-augmented case. This indicates a significant 
support of the augmented than the un-augmented form. 
 
 
CONCLUSION AND RECOMMENDATIONS 
 
The study has thus revealed that the four specified 
functions in the application software appear insufficient in 
modeling all animals and plants of different species since 
differences in biological characteristics of different 
species can be manifested in their detections and 
detectability processes. 

In addition, data recordings and presentation in this 
type of study requires more generalization in a form 
described in this study as “augmentation” process. 
Detectability of the elephant species is observed to be 

explained mathematically as         [      ⁄      ] in 
the classical perspective with the DISTANCE application 
software. With covariates inclusion, the detectability 

appears as                        ⁄          wherein 
a change can be observed in both the scale and shape 
parameters as with the case of Marques et al. (2007) who 
indicated that performing a multiple covariate analysis 
affects only the scale parameter. With further exploration 
with possible functions that can perform an equal role or 
better based on probability of detection produced, the 
Weibull distribution appear to better explain the 
distribution of the elephant species than the hazard rate 
functions. 

Finally, observation of units of interest conditional on 
distances has been modeled in a more general 
perspective with additional categorical predictors wherein 
all regression equations are provided at various factor 
level combinations with about 99.98% of explained 
variation in the model by the data augmentation process 
and less than 20% of explained variability for un-
augmented case. It is therefore recommended that: 
 
1) Further exploration should be performed prior to 
analysis and estimation to determine appropriate 
distribution that seems to appropriately describe specific 
units of interest under investigation. 

2) Expansion of the functional space in the application 
DISTANCE software. 
3) Application of data augmentation process in data 
representation with LTM involving observation with more 
than one species at a time. 
4) Data augmentation is a necessary tool for data 
organization especially when a complete coverage of the 
entire study region is or may appear impossible or 
difficult. 
5) Regression in a generalized form appears more 
appropriate in modeling with both continuous and 
categorical variables combined. It allows for separate 
equations to be provided at various factor level 
combinations of the categorical variables. 
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