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Deleanu, Frei and Hilton have developed the notion of generalized Adams completion in a categorical 
context. In this paper, the symmetric algebra of a given algebra is shown to be the Adams completion of 
the algebra by considering a suitable set of morphisms in a suitable category. 
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INTRODUCTION 
 
The notion of generalized completion (Adams 
completion) arose from a categorical completion process 
suggested by Adams (1973, 1975). Originally this was 
considered for admissible categories and generalized 
homology (or cohomology) theories. Subsequently, this 
notion has been considered in a more general framework 
by Deleanu et al. (1974) where an arbitrary category and 
an arbitrary set of morphisms of  the category are 
considered; moreover they have also suggested the dual 
notion, namely the completion (Adams completion) of an 
object in a category.  

The notion of Let  be an arbitrary category and  a 

set of morphisms of .  Let   denote the 

category of fractions of  with respect    and   

  be the canonical function. Let       denote the 

category of sets and functions. Then for a given object   

of ,  

 

   

defines a covariant function. If this function is 

representable by an object   of , that is,  

. then  is called the 

(generalized) Adams completion of  with respect to the 

set of morphisms  or simply the -cocompletion of    

We shall often refer to  as the completion of 

(Deleanu et al., 1974). Given a set of morphisms 

of , the saturation   of   is defined as the set of all 

morphisms   in   such that   is an isomorphism 

in .    is said to be saturated  if   (Deleanu 

et al., 1974). 
 
 
Theorem 1 
 

Behera and Nanda (1987) Let  be a complete small -

category (  is a fixed Grothendeick universe) and  a 

set of  morphisms  of      that  admits  a  calculus  of  left
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fractions. Suppose that the following compatibility 
condition with co-product is satisfied. If each 

, ,  is an  element is  of  ,  then 

 

 
 

is an element of   . Then every object  of  has an 

Adams completion  with respect to the set of 

morphisms . 

 
 
Theorem 2 
 

Let   be a set of morphisms of   admitting a calculus 

of left fractions. Then an object   of  is the -

completion of the object  with respect to  if and only if 

there exists a morphism  in  which is co-

universal with respect to morphisms of  : given a 

morphism  in  there exists a unique 

morphism  in  such that . In 

other words, the following diagram is commutative 
(Deleanu et al., 1974): 
 

 
 
 
Theorem 3 
 

Let  be a set of morphisms in a category   admitting 

a calculus of left fractions. Let  be the 

canonical morphism as defined in Theorem 2, where is 

the -completion of . Furthermore, let  and  be 

sets of morphisms in the category which have the 

following properties (Behera and Nanda, 1987b): 
 

  and     are closed under composition, 

implies that   

implies that  , 

. 

Then   
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Symmetric algebra 
 

Let  be a commutative ring. Let   be a -module 

and  be the tensor algebra of   over .  

is a graded -algebra with the graded piece of degree 

 being the additive subgroup , which we 

denote by . The map  defined by 

 is 

a morphism of -modules, which gives an isomorphism 

of -modules of    with its image   (Murfet, 

2006). Let  denote the -th symmetric algebra 

(Grinberg, 2013). The map  is a 

subjective -module homomorphism. We prove the 

following for our need. 
 
 
Theorem 4 
 

Let   be a commutative ring with unit 1. Let 

  be -module isomorphism. Then    

has the following property: given a module 

isomorphism  , there exists a unique 

module isomorphism such 

that , that is, the following diagram is 

commutative :  
 

 
 
 
Proof 1 
 

For , define   

 
by the rule 

. 

 

Clearly  is well-defined, homomorphism, one-one and 

onto. We have 
 

 

=     

=     

=    , 
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showing   . 

For showing the uniqueness of  let there exist another 

 such that . Then 

 

 

=     

=     

=    . 

 
This completes the proof. 
 
  
Theorem 5 
 

Let      be a commutative ring with unit 1. Let  and 

 be free -modules and let  be 

a free -module subjective homomorphism. Then  has 

the following property: given a free   -module subjective 

homomorphism ,   there exists a 

unique free   -module subjective homomorphism 

   such that , that is, the 

following diagram is commutative: 
 

 
 
 
Proof 2 
 

Theorem 4, there exists a unique -module isomorphism   

  such that    : 

 

 
 

Where    is a -module 

isomorphism. Consider the diagram  

 
 
 
 

 
 

Let  .  For each , define 

 by the rule  . Then 

for each   we have   

   
  

 

Showing . Clearly  is subjective. For the 

uniqueness suppose there exists another   

 such that . For any 

each  let , ; thus  

, 

showing .This completes the proof.                                                                                                                                              

 
 

The category  

 

Let    be a fixed Grothendieck universe (Schubert, 

1972). Let    denote the category of all free -

modules and free module homomorphisms where    is 

a commutative ring with unit 1. We assume that the 

underlying sets of the elements of  are elements 

of . Let   denote the set of all free -module 

homomorphisms such that   is 

subjective. 
 
 
Proposition 
 

 Let     be a subset of ; 

where the index set  is an element of , then 

 

 
 

is an element of . 

 
 
Proof 3 
 
The proof is trivial. 



 
 
 
 

We will show that the set  of free -module 

homorphisms of the category  of free -modules 

and free -modules homomorphisms admits a calculus 

of left fraction. 
 
 
Proposition 
 

 admits a calculus of left fractions. 

 
 
Proof 4 
 

Since  consists of all subjective -module 

homomorphisms in ; clearly  is a closed family of 

morphisms of the category . We shall verify conditions 

(i)  and  (ii)  of Theorem 1.3 ([6], p. 67). Let    , 

   and  be in . Let     

and       be two free -module 

homomorphisms of the category . We show that if 

 and  then . Since 

and we have 

and . Then 

. So  is surjective. 

Hence condition (i) of Theorem 2 (Deleanu et al., 1974) 
holds. In order to prove condition (ii) of Theorem 2 
(Deleanu et al., 1974) consider the diagram   
 

 
 

in  with . We assert that the above diagram 

can be embedded to a weak push-out diagram  
 

 
 

in    with . Let 

 
 

Where  is a sub-module of   

generated by 
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. 

Define  by the rule 

 
and  by the rule  

. 
 
Clearly, the two maps are well defined and 
homomorphisms. For any  

,  we have 

 

=     

=     

=    ; 

 

Thus . Hence the diagram is commutative. In 

order to show  is subjective, take an 

element ,  

 
where

. Then  
 

 

=     

=    

 

=     

=    

 

=    

 

=    

 

 

Thus  is an epimorphism. So . 

Next let    and    be 

in category  such that .  Consider the 

following diagram 
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Define   by the rule     

 

  

 
Where . 

 

It is easy to show that     is well defined and also a 

homomorphism. Next we show the two triangles are 

commutative. For any , we 

have 
 

 

=     

=     

 

and for any , we have 

 

 

=          

=    .  

 

So  and .   Clearly       is unique. This 

completes the proof. The following result is a well-known. 
 
 
Theorem 6  
 

The category   is complete. From Theorems 6, 7 and 

8 we see that all the conditions of the Theorem 1 
(Deleanu, 1975) are satisfied. So from the Theorem 1 
(Deleanu et al., 1974)  hence we have the following 
result. 
 
 
Theorem 7 
 

Every object  of the category  has an Adams 

completion  with respect to the set of 

morphisms . Furthermore, there exists a morphism 

 in       which is couniversal with 

respect to the morphisms in : given a morphism 

 in  there exists a unique morphism 

in      that . In other words 

the following diagram is commutative: 
 

 

 
 
 
 
Theorem 8 
  

The free -module homomorphism  is 

in . 

 
 
Proof 5   
 

Let    in     is a 

subjective free -module homomorphism  

 
and 
 

 in  is a free -module 

homomorphism . 

 
Clearly,  
 

(a)    and 

(b)    and      satisfy all the conditions of  Theorem   

3. 
 

Hence . This completes the proof.  

 
 
Result 
 

We show that the th term of symmetric algebra  

of a free -module , is precisely the Adams 

completion  of .  

 
 
Theorem 9       
 

 

 
 
Proof 6 
 
Consider the following diagram: 
  

 
 
By Theorem 5, there exists a unique morphism 

    in       such that   .  



 
 
 
 
Next consider the following diagram: 
 

 
 
By Theorem 7, there exists a unique morphism 

     in    such that .     

Consider the following diagram: 
 

 
 

We have . By the uniqueness 

condition of the co-universal property of , we conclude 

that . Next consider the following diagram:  

 

 
 

We have . By the uniqueness 

condition of the property of , we conclude 

that . Thus . This 

completes the proof. 
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