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The Galerkin method is used to numerically solve the exterior boundary value problem for the radiosity 
equation for the spherical quatrefoil. The radiosity equation is a mathematical model for the brightness 
of a collection of one or more surfaces when their reflectivity and emissivity are given. On planet Mars 
the surface emissivity is closely related to its surface temperature. The radiosity of a surface is the rate 
at which the energy leaves that surface; it includes the energy emitted by a surface as well as the 
energy reflected from other surfaces. 
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INTRODUCTION 
 
The mathematical model for the brightness of a collection 
of surfaces, when their reflectivity and emissivity are 
known in an exterior domain, is given by the Radiosity 
Equation: 
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Common methods such as the Direct Computation 
Method and the Modified Decomposition Method do not 
work as a method of solution as this is a nonlinear 
singular Fredholm Equation of the second order. Here, 
u(P) is the radiosity or simply the brightness at P and 
emissivity is given by E(P) and the reflectivity ρ(P) is 
between zero and one. The assumption on the surfaces 
is that they are Lambertian diffuse reflectors. The method 
could also be extended to investigate alternative means 
of  lighting  on the planet such as, an artificial light source  

within a habitat since fluorescent lamps have also been 
reported to be the most appropriate light source for 
illumination on the interior of a spacecraft (Arvo, 1995). In 
addition, there have been published emissivity and 
reflectivity values for metal alloys and manufactured 
carbon-based fibers that could be used as inputs for a 
radiosity equation which will model a physical design for 
an interior space (deGroh et al., 2008). Simulations, 
considering material properties of internal components 
interacting with light waves inside the structure were used 
to generate data.   

The spherical quatrefoil is controlled by one parameter. 
There are some numerical issues in this type of analysis; 
because of the singularity in the Kernel of the integral 
equation (Beyer, 1987). The Kernel G which is bounded 
when the surface is smooth is given by: 
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Figure 1. Spherical quatrefoil. 

 
 
 
where   is the angle between and (Q - P). The formula 

for  the  spherical quatrefoil shape  is given by (Figure 1):  
 

ρ = 0.002 + 0.003 cos (2θ) ²  
                           

                            

                                                        (2) 
 

The radiosity model generally describes the energy both 
emitted from and reflected by a surface. The amount of 
energy that can be emitted from a surface depends only 
on the temperature of the surface (the Stefan-Boltzmann 
Law and the Wien’s Law) and the emissivity of the 
material. The energy that strikes the surface is reflected 
from the surrounding environment. 

The illumination at a given point in the environment is a 
combination of the light emitted by a light source, and the 
light reflected from the surfaces. We researched the 
feasibility of obtaining good convergence results for the 
spherical quatrefoil when the light source is the sun and 
when there is artificial light located on the exterior of the 
space but still on the spacecraft; these are named Case I 
and Case 2.  

It is our view that smaller reflectivity values would 
reduce computational costs associated with obtaining 
Galerkin coefficients. Compared with earth, Mars has 
lower surface temperatures, much lower atmospheric 
absorption and radiation, and higher surface emissivity 
(Ho et al., 2012). We made the assumption that in Case 1 
the light source for the interior Quatrefoil space of the 
spacecraft originated from outside of the spacecraft thus 

from the Martian atmosphere (Wheelwright and Toole, 
1992). Mars has a large surface emissivity due to the 
land surfaces having lower dielectric constants. No liquid 
water surface has been detected on Mars. The soil’s 
moisture and surface roughness affect emissivity, and the 
color of materials also affects the reflectivity. On the 
average, earth has lower values of emissivity and 
reflectivity. Mars has higher average surface emissivity 
due to the roughness of soil and rocks on the surface. 
For any surface to maintain a constant temperature, the 
incoming energy has to be the sum of the energy emitted 
and reflected. We used the Green's theorem to solve the 
integral equation on the boundary of the surface for the 
Dirichlet problem. Previously, multiple surfaces were 
used to test this method for the Dirichlet condition, such 
as the spherical rhombus (Warnapala and Deng, 2016). 
The shapes we are working on is a more realistic shape 
that is simply connected and bounded and is suitable for 
the brightness that exits on planet Mars.  
     The exterior boundary problem for all these surfaces 
will be solved using the Gaussian quadrature method, 
where rotations of the coordinates would be used to 
minimize the inherent singularity that is present in the 
fundamental solution of the radiosity equation. The 
boundary condition   will   only   take   into   account   the 
absorption of the incoming light waves (Atkinson and 
Chien, 2006). The assumption on the surfaces is that 
they are Lambertian diffuse reflectors. Brightness of 
these surfaces are the same regardless of the observer's 
angle of view, thus they obey the Lambert's Cosine Law 
or are isotopic. 

p pn
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METHODOLOGY 
 
Fortran 77 software was used for all calculations. 
 
Radiosity model 
 
S is a closed bounded surface in ℜ³ and it belongs to the C² class.  
D₊ denotes the exterior of the spherical quatrefoil. Then the  
radiosity (brightness) equation from computer graphics is given by: 
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with E a given emissivity function. E is l times continuously 
differentiable and the Ith order derivatives of the surface 
representations are also Holder continuous with exponent λ. The 
function spaces we are working with are L²(S) and C(S) that is, the 
square-integrable Lebesgue measurable functions and the 
continuous functions on S, respectively. 
 
 
Formulation of the radiosity integral 
 
The boundary value problem was reformulated as an integral 
equation. The integral is only solved on the boundary of the 
spherical quatrefoil. 
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where  

 
This is a weakly singular integral; these types of equations arise in 
many applications such as in radiation equilibrium applications, 
electrostatics and potential theory (Colton and Kress, 2013). The 

kernel ),( QPG  is given by: 
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where  Pn is the inner unit normal to S at ,P  and 1),( QPV   

(assuming that the points P  and Q  are in a straight line and does 

not intersect with the surface at any other point), unclouded 

surface; ,m
nY mmn ,...  denote the basis functions that are the 

linearly independent spherical harmonics of order m given by: 
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The integral equation is given by:  
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(
[(   )   ][(   )   ]

        
)    

         (7)  

 

By the assumptions on ),( QPG
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on , and is compact from to and  to    ( )  

(Warnapala and Deng, 2016).  
 
 
The Galerkin method 
 
The variable of integration in (7) was converted to a new integral 
equation defined on the unit sphere U.  The Galerkin method was 
applied to this new equation, using spherical polynomials to define 
the approximating subspaces (El-Ajou et al., 2015). 
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where m is at least differentiable, for which the following properties 
are satisfied. 
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By changing the variable of integration in (7) we obtained the new 
equation over U thus: 
 
(   ) ̂   ̂  ̂    ( )               (10) 
 

where  (   )  
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The notation ^ denotes the change in variable from S to Unit 
Sphere, as in (9).  The operator (   )   exists and is bounded on 

)(UC and L2(U) (Arqub et al., 2017). The dimension for the 

approximating subspace of spherical polynomials of degree N is

d :)1( 2N and  dhh ,...1  denotes the basis of spherical 

harmonics for the Galerkin's method to solve (10) given by: 
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After one computes the Galerkin coefficients    by (12), we 
substitute the coefficients to (13) to find the approximate solution for 
our problem. 
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The numerical solution is thus given by 
 

   ̂  ∑      
 
                        (13)         

 

The convergence of Nu to u in )(2 SL  is straightforward in Lin 

(1982). 

 
 
Volume and the surface area for the spherical quatrefoil 

 
The quantity of the space enclosed by the shape or volume, was 
solved by deriving an integral using the spherical quatrefoil’s 
parametric equations and spherical coordinates. The equations of 

the shape are given by (1). Since             and the radius 
                        then it follows that         
           

The equation for outer edge of a sphere was derived using the 

shape’s radius and  (     )  √          The triple integral we 

used for the volume is given by: 
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The triple integral includes ranges in all three directions (ρ, θ, ϕ) 
and was calculated using Python programming language; the 
approximate value was                          . 

The surface area of the spherical quatrefoil is smooth and 
irregular, but can be approximated using oblate and prolate 
spheroid surface area formulas as a surface revolution about the z-
axis.  The general ellipsoid is a quadratic surface where the semi-
axes are lengths a, b, and c.  

Equal semi-axes lengths assume a spheroid and varying lengths 
determine oblate or prolate classification. An oblate spheroid is 
formed by revolving an ellipse about the minor axis:  
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where      
  

  
.  

 
Whereas a prolate spheroid is formed by revolving an ellipse about 
the major axis:  
 

  prolate     (  
 

  
      )  

 

where      
  

  
   (Voigt et al., 2004). 

 
For the horizontal spherical body component of the spherical 

quatrefoil, ellipticity of the oblate spheroid was used to approximate 
its surface area. Likewise, the surface area of the vertical spherical 
body component was approximated using the ellipticity of a prolate 
spheroid; the approximated value was 3.459603087 × 10-9. 

Both surface area and volume approximations were calculated 
for the general (1:1:1) spherical quatrefoil for Case 1. Varying 
coefficient ratios altered surface area and volume approximations. 

 
 
Emissivity and reflectivity on Planet Mars 

 
Compared with Earth, Mars has lower surface temperatures and 
much lower atmospheric absorption and radiation in addition to 
higher surface emissivity (deGroh et al., 2008). The atmospheric 
emission from oxygen and water vapor is almost negligible due to 
very low atmospheric density and optical depth. Martian surface 
emissivity is closely related to physical temperature and materials 
on it. Mars has a large surface emissivity due to its land surfaces 
having lower dielectric constants. No water surface has been 
detected on Mars. The soil's moisture and surface roughness also 
affect emissivity. Lower material densities have lower reflectivity. In 
all, on the average, Earth has lower value of emissivity and 
reflectivity. However, rocks on Mars usually have lower emissivity.      

Surface emissivity (E) is related to reflectivity;  1E , which 
means the sum of emissivity and reflectivity is 1. To the naked eye, 
Mars’ has a reddish appearance due to the presence of iron oxide 
dust (Markiewicz et al., 1999). When light radiates from the sun and 
shines onto Mars, the sky would appear as orange. Thus, the 
wavelength and frequency values will be derived from the orange 
visible light on the electromagnetic spectrum. In using the 
wavelength of orange visible light as the input of both the functions, 
it is necessary to obtain an optimal range of varying amplitude. The 
amplitude of a light wave is important in understanding the 
brightness or intensity of the light as it measures the amount of 
energy carried. Since there have not yet been specific amplitude 
values reported from planet Mars, ranges will be obtained 
according  to convergence  results with  the  smallest absolute error 
for the sine and its co-function.  
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NUMERICAL RESULTS 

 
Case 1: Brightness from external light source 

 
Case 1 modeled the potential of harnessing natural 
lighting from the sun while the spherical quatrefoil is 
inhabited and stationed on planet Mars. For testing this 
case, a sine function was used to model the activity and 
interactions between light components such as 
wavelength (λ), frequency (ν), angular frequency (ω), 
wave number (k), time in seconds (t), and amplitude (A). 

 
The true solutions tested are given by: 

 
U1 = 3.05 COS (2.18E10-15X + 3.92E10-6Y) 

 
U2 = 0.0003 SIN (2.18E10-15X + 3.92E10-6Y) 

 
U3 = 1 SIN (1.58E-15X - 4.72E10-21Y) 

 
U4 = 2 SIN (1.58E-15X - 4.72E10-21Y) 

 
U5 = 5 SIN (1.58E-15X - 4.72E10-21Y) 

 
U6 = 10 SIN (1.58E-15X - 4.72E10-21Y)  

 
Here the assumption is that the true function and the 
emissivity are the same. NINTI = 32 are the interior 

nodes used for calculating  ̂  , NINTE = 20 are the 

exterior nodes used for calculating ( ̂     ). NDEG = 5 is 

the degree of the approximate spherical harmonics. 
Figure 3a and b are plotted equidistant from the 

spherical quatrefoil. The graphs show that the amplitude 
(energy level) of the emissivity function has a small effect 
on convergence results. The direction of sunlight that 
gives the brightness of the quatrefoil space has also a 
small impact on the convergence. 
 
 
Case 2: Brightness from an internal light source 

 
Research has reported that blue light has strong impacts 
on dinoflagellates and can be greatly efficient in 
maintaining synchronized circadian rhythms (Holzman, 
2010). Case 2 modeled the illumination inside the 
spacecraft just outside of the spherical quatrefoil with an 
internal artificial light source of blue light (Figure 2).    

Figure 4 shows that there is much greater accuracy for 
the points away from the boundary than for points near 
the boundary, because the integrand is more singular at 
points near the boundary as the kernel function involves 
1/r

2
 which is much more oscillatory. When r becomes 

large, we had to increase the integration nodes to 
achieve the same accuracy.  Also we chose NINTE < 

NINITI, because the integrand of (    ̂  )  is smoother 

than the integrand of  ̂  .   
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Figure 2. Preliminary sketch of the spherical quatrefoil and its interior configuration. 

 
 
 

 
 

Figure 3a. Convergence results for different points for the true function of U1 = 3.05 COS (2.18E10-15X + 
3.92E10-6Y). The wave number was 2.18E10-15, the angular frequency was 3.92E10-6, ρ=0.10, NDEG=5, 
NINTI=32, NINTE=20, and a coefficient ratio of 1:2:1 for the spherical quatrefoil was used. 
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Figure 3b. Convergence results for various points and the true function of U2 = 0.0003 SIN (2.18E10-15X + 3.92E10-
6Y). The wave number was 2.18E10-15, the angular frequency was 3.92E10-6, ρ=0.10, NDEG=5, NINTI=32, 
NINTE=20, and a coefficient ratio of 1:2:1 for the spherical quatrefoil was used. 

 
 
 

 
 
Figure 4. Optimal convergence results for blue light emissivity function of a sine function for various points using an 
amplitude of 10; emissivity given by U6=10SIN(1.58E-15X-4.72E10-21Y), ρ=0.004, and a coefficient ratio of 1:2:1 for 
the spherical quatrefoil was used. NDEG=5, NINTI=32, and NINTE=20. Four different points with increasing distance 
from the boundary of the shape were used.  
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Table 1. Convergence results for blue emissivity sine function. Emissivity was given by U=A SIN 
(1.58E-15 X-4.72E10-21 Y). A coefficient ratio of 1:2:1 for the Spherical Quatrefoil and ρ=0.004 
was used. NDEG=5, NINTI=32, and NINTE=20. From 4 different directions, 4 different amplitudes 
(1,2,5 and 10) were used. 
 

Amplitude 
(A) 

Points (x,y,z)  Distance  Absolute Error 

1 

0,5,10 11.18034 9.3177830568D-06 

0,6,11 12.529964 9.3177830515D-06 

0,7,12 13.892444 9.3177830511D-06 

0,8,13 15.264338 9.3177830508D-06 

    

2 

0,5,10 11.18034 9.3177830323D-06 

0,6,11 12.529964 9.3177830270D-06 

0,7,12 13.892444 9.3177830266D-06 

0,8,13 15.264338 9.3177830263D-06 

    

5 

0,5,10 11.18034 9.3177829588D-06 

0,6,11 12.529964 9.3177829535D-06 

0,7,12 13.892444 9.3177829530D-06 

0,8,13 15.264338 9.3177829527D-06 

    

10 

0,5,10 11.18034 9.3177828362D-06 

0,6,11 12.529964 9.3177828309D-06 

0,7,12 13.892444 9.3177828305D-06 

0,8,13 15.264338 9.3177828302D-06 

 
 
 
Conclusion 
 
We conclude that the error is affected by the boundary S, 
boundary data, emissivity, reflectivity and the position of 
the light source (Table 1). In this case, we found the 
optimal solution for the number of integration nodes that 

were used for calculating Galerkin coefficients  ( ̂     ). 

Aside from investigating the interactions of different metal 
alloys and various coatings with incoming light waves, 
future work will also aim to resolve other boundary 
conditions for the spherical quatrefoil, besides the 
Dirichlet condition. For instance, there is the Neumann 
and Robin boundary conditions (Arqub, 2017). Solutions 
to the radiosity equation are relevant to agencies such as 
NASA (National Aeronautics and Space 
Administration) because of their use in energy balancing 
relationships in isothermal and non-isothermal surfaces 
and space. The radiosity equation is generally an energy-
balanced equation for discrete surfaces (Atkinson, 1982).  
Since the quality and intensity of brightness depends on 
the material properties of the surfaces such as color, 
reflectance and texture, we need to further research on 
what materials are best to build an interior space to 
satisfy these requirements. The current emissivity functions 
used to test the shapes were based on the sine wave 
function and the cosine function. Our results thus provide 
a window to an applicable design for an interior space 
shaped as a spherical quatrefoil with adequate brightness 
on a spacecraft that might, someday, land on Mars. 
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