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ABSTRACT 
 

Multi-State systems are systems whose outputs are multi-valued (due to multiple levels of capacity 
or performance) and (possibly) whose inputs are also multi-valued (due to multiple performance 
levels or multiple modes of failure). These systems are a generalization of binary or dichotomous 
systems that have binary or two-valued outputs and inputs. The multi-state reliability model 
generalizes and adapts many of the concepts and techniques of the binary reliability model, and 
naturally ends up with sophisticated concepts and techniques of its own. This paper explores the 
possibility of simply analyzing a multi-state system by reformulating or encoding its inputs in terms 
of binary inputs and evaluating each of its multiple output levels as an individual binary output of 
these alternative inputs. This means that we dispense with multiple-valued logic in the analysis of a 
multi-state system, since this system is now analyzed solely via switching algebra (two-valued 
Boolean algebra). The wealth of tools and techniques of switching algebra are now used (without 
any modification or adaptation) in the analysis of the multi-state system (at the cost of an expanded 
input domain). The paper makes its point though the analysis of a standard commodity-supply 
system, whose multi-valued inputs are expressed in terms of physically-meaningfully binary inputs. 
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The analysis is made possible through the use of advanced techniques for deriving probability–
ready expressions together with the employment of large-size Karnaugh maps and utilization of 
multiplication tables, symmetric switching functions, and Boolean quotients. Though the system 
studied involves twelve binary input variables, its manual analysis is completed successfully 
herein, yielding results that exactly agree with those obtained earlier via automated methods, and 
are possibly less prone to the notorious effects of round-off errors. 
 

 
Keywords: System reliability; probability-ready expression; k-out-of-n; switching–algebraic analysis; 

multi-state system; binary system; Boolean quotient; eight-variable Karnaugh map. 
 

1. INTRODUCTION 
 
Many practical systems and (possibly) their 
components have more than two states (i.e., 
operational and failed). On the system level, 
multiple states can be interpreted as multiple 
levels of system capacity or performance. On the 
component level, the multiple states can be 
interpreted as different performance levels and 
also as multiple failure modes with each mode 
having a different impact on the system level 
performance. These systems are modeled as 
multi-state systems (MSSs). Prominent among 
MSSs is the class of coherent MSSs whose 
cornerstones are the k-out-of-n MSSs. (See 
Appendix A). 
 
The literature abounds with many research 
papers on MSSs [1-18]. A significantly large 
proportion of these papers are devoted to 
coherent MSSs, and, in particular, to their 
backbone class of k-out-of-n MSSs [19-22]. 
Almost every technique used with binary systems 
has been modified, adapted, or extended for use 
with MSSs. A plethora of sophisticated concepts 
and techniques for MSSs have accumulated over 
the past few decades. 
 
This paper advocates the simple thesis that 
binary tools do not have to be left behind while 
handling MSSs. In fact, there is a wealth of these 
tools, and many of them are pedagogically 
insightful and computationally powerful. The 
paper offers a switching-algebraic analysis of a 
standard multi-state commodity-supply system, 
in which techniques of switching algebra are 
solely used without any modification or 
adaptation. This analysis can be extended to 
other MSSs of comparable sizes, and might be 
automated to handle MSSs of lager sizes. 
 
We do not propose to solve general and large 
MSS problems by reducing them to binary 
problems. But we have other more modest 
purposes in mind. These are: 

1. To provide a truly independent means to 
check and verify the somewhat weird and 
frequently non-transparent and 
sophisticated  MSS solutions, 

2. To offer some pedagogical insight on the 
nature of MSS problems and a justification 
of the currently used MSS mathematics, 

3. To establish a clear and insightful 
interrelationship between binary modeling 
and MSS modeling, and 

4. To push mathematical tools of binary 
modeling to their utmost utility, and make 
the most of them.   

   
The organization of the remainder of this paper is 
as follows. Section 2 advocates working in the 
switching (two-valued Boolean) domain despite 
the multi-valued nature of the pertinent problem. 
Section 3 offers a physically-meaningful binary 
(two-valued) description of a typical multi-state 
system, while Section 4 details the binary 
analysis of such a system utilizing several 
important concepts of switching algebra, 
including those of probability-ready expressions, 
Boolean quotients, and symmetric switching 
functions. Section 5 discusses our results for the 
homogeneous (i. i. d.) case, and verifies that the 
expectations of the multiple instances of the 
multi-valued output add identically to 1. Section 6 
uses large (8-varaible) Karnaugh maps to verify 
the analysis in the heterogeneous case. Work in 
this section constitutes an alternative map 
method that can be used instead of the 
preceding algebraic analysis. Section 7 shows 
that our numerical results exactly agree with 
those obtained by Tian et al. [19] and later by Mo 
et al. [22]. Section 7 also suggests that our 
method might be less prone to the undesirable 
effects of round-off errors. Section 8 concludes 
the paper. Three appendices are included to 
make the paper self–contained. Appendix A 
provides an ample verbal description for the MSS 
that is solved throughout this paper. Appendix B 
reviews several pertinent concepts in reliability 
theory, while Appendix C briefly describes 
symmetric switching functions (SSFs) and their 
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utility in characterizing successes of binary k-out-
of-n: G systems. 
 

2. ADVANTAGES OF WORKING IN THE 
SWITCHING DOMAIN 

 
This paper is essentially a sequel and a multi-
state extension of earlier work on computing 
system reliability through working in switching 
(two-valued Boolean domain) [23-44]. Rushdi 
and Rushdi [42] list advantages of reliability 
modeling for binary systems in the Boolean 
domain. These advantages include easy 
formulation, useful insight and fallacy avoidance. 
These advantages are still all valid for handling 
MSSs. In addition, the utilization of familiar 
already-existing tools is definitely an asset.  

  
Admittedly, it might be more natural to formulate 
multi-state reliability problems in term of multi-
valued logic rather than binary logic. However, 
one of the ‘good’ alternatives for handling 
problems of multi-valued logic is to reduce them 
to problems of binary logic. There is already an 
unsettled debate (extending to areas beyond the 

scope of reliability), on whether problems of 
multi-valued logic should be better solved in the 
multi-valued domain, or should be alternatively 
replaced by equivalent problems in the binary 
domain [45]. We reiterate herein our belief that 
one might prefer one of these two alternatives to 
the other only as a matter of personal discretion, 
taste, and background. 
 

3. BINARY DESCRIPTION OF A TYPICAL 
MULTI-STATE SYSTEM 

 
In this section, we introduce a typical multi-state 
system that has been proposed and studied by 
Tian et al. [19] and further studied by Fadhel et 
al. [21], and Mo et al.  [22]. This system is 
verbally described in Appendix A and is shown in 
Fig. 1. It is modeled as a multi-state k-out-of-n: G 
system with n = 4, k1 = 4, k2 = 2, and k3 = 3 (see 
Appendix B). In a nutshell, the system is a supply 
system of a certain commodity (e.g., oil, water, 
energy, transportation traffic, or communication 
traffic, etc.) that employs four pipelines to 
transport the given commodity from the given 
source to three sink nodes called stations. 

 

 
 

Fig. 1. A commodity-supply system that is modeled as a multi-state k-out-of-n: G system 
(Adapted from Tian et al. [19]). Here Yij denotes the success of section j of pipeline i  

 (1 ≤  � ≤  � ,  1  ≤  � ≤  �). 
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As a multi-state system, the system can be 
quantified by the multi-state input variables Xi{j}, 
1 ≤ i ≤ 4 , 0 ≤ j ≤ 3, and the multi-state output 
variable S{k}, 0 ≤ k ≤ 3 . These variables are 
defined as follows 
 

Xi{j}= A binary indicator that the commodity 
can reach up to station j through pipeline 
(route, transmission line, or communication 
link) number i (1 ≤ i ≤ 4 , 0 ≤ j ≤ 3) . In 
other words, Xi{j} indicates that the 
commodity can reach all stations ℓ (1 ≤ ℓ ≤
�) though  pipeline i. 

 
For convenience, the definition above refers to a 
station 0 (which actually does not exist), but the 
inclusion of j = 0 allows us to handle the null 
case in which the commodity cannot reach any of 
the existing stations. Note that for a specific 
pipeline i, the set of values {Xi {j}, 0 ≤ j ≤ 3 } is 
an orthonormal set, i.e., one and only one of the 
variables Xi{0}, Xi{1}, Xi{2} and  Xi{3} is 1, while 
the rest are 0., i.e., for 1 ≤ i ≤ 4. 
 

Xi{0}+ Xi{1}+ Xi{2}+  Xi{3} =1                     (1a) 
 

Xi{j1}*  Xi{j2} = 0  for  j1 ≠ j2                         (1b)  

 

Likewise, we use S{k} {0≤ k ≤ 3 }  as a binary 
indicator that the system can meet the 
commodity demand up to station k i.e., for all 
stations ℓ (1 ≤ ℓ ≤ �). Again, we note that station 
0 does not exist, and hence k = 0 means that the 
system cannot meet the commodity demand of 
any existing station. 
 
We now introduce a new set of twelve input 
binary physically-meaningful variables Yij 

(1  ≤ i ≤ 4 , 1 ≤ j ≤ 3) to describe the original 
multi-state system, where Yij denotes the 
success of section j of pipeline i (see Fig. 1). 
Each of the four-valued variables Xi {1 ≤ i ≤ 4 } 
is now replaced by three binary variables Yi1 ,Yi2 
and  Yi3 through the relations deduced in        
Table 1, and graphically depicted in Fig. 2. Note 
that Fig. 2 is a Karnaugh-map-like structure of 
three map variables Yi1, Yi2 and Yi3, and four 
exhaustive and mutually exclusive areas 
depicting the four orthonormal instances of Xi. 
Table 2 lists direct and inverse relations among 
expectations of instances of Xi and those of the 
Yij’s. The inverse relations are needed for 
converting the input data of Tian et al. [19] into 
input data for our purposes. 
 
In passing, we note that we have chosen to 
express the original multi-valued inputs in terms 
of physically meaningful binary variables Yij 
without insisting on minimizing the number of the 
new binary inputs. In fact, two binary inputs Zi1 
and Zi2 suffice as a binary reformulation of the 
four-valued Xi, since we can write (for 1 ≤ i ≤ 4 ) 
 

Xi{0} =  Z���Z���                                              (2) 
 

Xi{1} =  Z���Zi2                                               (3) 
 

Xi{2} =  Zi1 Z���                                             (4) 
 

Xi{3} =  Zi1 Zi2                                             (5) 
 
However, it is very difficult to ascribe physical 
meaning to the artificially-constructed variables 
Zi1 and Zi2. Moreover, if we use the  Zij’s rather 
than the Yij’s, the analysis in Section 4 might 
become less transparent. 

  

 
 

Fig. 2. Relation between members of the orthonormal set {Xi(j), 1 ≤ � ≤ � , 0 ≤ � ≤  �} , and the 
binary variables {Yij }, 1  ≤ � ≤ � , 1  ≤ � ≤  �. 
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Table 1. Relating the four-valued variable Xi  to the three binary variables  Yi1, Yi2 and Yi3 

 
Situation Description in terms 

of Xi 

Description in terms 
of the Yij’s 

Resulting relation 

The commodity cannot 
reach any station 

Xi(0) = 1 Yi1 = 0 Xi{0} = Y��� 

The commodity 
reaches station 1 (and 
no further) 

Xi(1) = 1 Yi1 = 1 , Yi2 = 0 Xi{1} = Yi1 Y��� 

The commodity 
reaches station 2 (and 
no further) 

Xi(2) = 1 Yi1 = Yi2 =1 , Yi3 = 0 Xi{2} = Yi1 Yi2 Y��� 

The commodity 
reaches station 3 

Xi(3) = 1 Yi1 = Yi2 = Yi3 = 1 Xi{3} = Yi1 Yi2 Yi3 

 

Table 2. Direct and inverse relations among expectations of  instances of Xi and those of the 
encoding binary variables Yij’s 

 
Expectations of instances of Xi  in terms of 
those of the Yij’s 

Expectations of  Yij’s  in terms of those of 
instances of Xi 

E{Xi(0)} = E { Y��� } E {Yi1} = 1— E{Xi(0)} 
E{Xi(1)} = E{Yi1 } E { Y��� } E {Yi2} = 1— E{Xi(1)}/ (1— E{Xi(0)}) 
E{Xi(2)} = E{Yi1 } E{ Yi2}  E { Y��� }  

E {Yi3} = 1— E{Xi(2)}/ (1— E{Xi(0) — E{Xi(1)}) E{Xi(3)} = E{Yi1 }E{ Yi2} E{ Yi3} 
= 1— E{Xi(0)} — E{Xi(1)} — E{Xi(2)} 

 
Now, we seek a formulation of the four-valued 
system success variable S{k}, {0 ≤  k ≤ 3} in  
terms of binary variables. Again, we sacrifice 
minimality of the  number of variables for the gain 
of intuitive insight. We use ��  {1 ≤ �  ≤ 3}  to  
depict the success of station m (that  its 
commodity demand is met). Hence, the four 
instances of  S are given  by the relations 

 
S{0}  =      S��                                               (6)      

           

S{1}  =     S1 S��                                           (7)   
                            

S{2}  =    S1 S2 S��                                        (8)    
             

S{3}  =   S1 S2 S3                                         (9)   
    

These relations are demonstrated via the 
Karnaugh-map-like structure of Fig. 3, which has 
three map variables S1, S2 and S3 and has four 
mutually exclusive and exhaustive areas for the 
four instances of the four-valued variable S. 

 
 

Fig. 3. Relation between the three binary four-valued system success variable S{k},  0 ≤ � ≤ � 
and the binary station success variables Sm , 1 ≤ � ≤ �. 
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4. BINARY ANALYSIS OF THE TYPICAL 
MULTI-STATE SYSTEM 

 
Our objective in this section is to compute the 
expectations E{S(k)} of the four instances (0 ≤ k ≤ 
3) of the four-valued system success. These are to 
be expressed in terms of the reliabilities E{Yij} of 
the various pipelines sections. First, we compute 
the station successes S1, S2 and S3 as shown in 

Table 3, and further we (digress a little bit to) 
compute the expectations of these three 
successes (which represent binary coherent 
systems). First, we directly obtain  
 

E{S(0)} = 1 –  E{S1} = 1 –  p11 p21 p31 p41   (10 ) 
 
Using the expression of S2 in Table 3, we obtain 
its complement S��  via (C.4) and (C.5) as

 
S�� = Sy({0, 1}; Y11 Y12, Y21Y22 , Y31 Y32, Y41 Y42) 
      = Sy({3, 4};  ���  

��������
����,  ���  

��������
����,  ��� 

��������
����,  ���  

��������
����)                                                                   (11) 

 
Table 3. Formulas for station successes and their expectations 

 
Station 
number 

General success formula PRE formula Expectation formula 

1 S1= ∧���
�  X��{0} 

= ∧���
�  Yi1 

S1= ∧���
�  Yi1 

 
E{S1} = ∧���

�  pi1 

2 S2 = Sy  ({2, 3, 4}; X1{2}∨ 
X1 {3} , X2{2}∨ X2 {3} , 
X3{2}∨ X3 {3} , X4{2} 
∨ X4 {3} ) 
= Sy  ({2, 3, 4}, Y11Y12, 
Y21Y22, Y31Y32, Y41Y42) 
 

S2= Z1 Z2 v Z1��
���

 Z3  vZ1 

��
���

 ��
���

 Z4 v ��
���

 Z2 Z3 v ��
���

 Z2 

��
���

 Z4              v��
���

 ��
���

  Z3 

Z4 
where  Zi = Yi1 Yi2 , 
1 ≤  i  ≤  4 

E{S2}= w1w2+w1(1-w2)w3 

+ w1(1-w2) (1-w3)w4 
+   (1-w1) w2w3 
+   (1-w1) w2(1-w3)w4 
+   (1-w1) (1-w2) w3w4 
where   wi = E{Yi1 Yi2} 
= pi1 pi2 ,  1 ≤  i  ≤  4 

3 S3 = Sy  ({3, 4}; X1(3), 
X2(3), X3(3), X4(3) 
= Sy  ({3, 4}, Y11 Y12 Y13, 
Y21 Y22 Y23, Y31 Y32 Y33, 
Y41 Y42 Y43) 
 

S3 =  Z1 Z2 Z3                                      
v  Z1Z2��

���
 Z4                 v  

Z1 ��
���

 Z3Z4                  v  ��
���

 

Z2 Z3 Z4 

where Zi = Yi1 Yi2 Yi3,  1 ≤  
i  ≤  4 

E{S3}= w1w2w3+w1 w2 (1-w3)w4 

+ w1(1-w2)w3w4 +(1-w1) w2w3 
w4 

where   wi = E{Yi1 Yi2 Yi3} 
=pi1 pi2 pi3 ,  1 ≤  i  ≤  4 

 
Hence, the instant S{1} is given by 
 

S{1} =  S1S�
�  = Y11Y21Y31Y41 S�

�   
         = Y11Y21Y31Y41  (S�

�  / Y11Y21Y31Y41) 
          = Y11Y21Y31Y41  Sy({3, 4},  ���

����,  ���
�����,  ���

����,  ���
����)                                                                (12) 

 
where we made some simplifications using property (B.3) of the Boolean quotient (See Appendix B). 
Using results of Appendix C, we rewrite S1S�� in PRE form as 
 

S{1} = Y11Y21Y31Y41 (Y���Y���Y��� ∨ Y���Y������Y��� ∨ Y������Y���Y���      
∨   ��� Y���Y���Y���)                                                                                                                    (13) 

 
which  transforms directly, on a one-to-one basis, into the expectation 
 

S{1}} = p11 p21 p31 p41 ( q12 q22 q32 + q12 q22  p32 q42 + q12 p22q32 q42 + p12 q22 q32 q42 )              (14) 
 
Similarly, we obtain the products S1S2  and  S1S3 as 
 

S1S2 = Y11Y21Y31Y41   Sy({2, 3, 4}; Y11Y12, Y21Y22, Y31Y32, Y41Y42) 
       =  Y11Y21Y31Y41   (Sy({2, 3, 4}; Y11Y12 , Y21Y22,  Y31Y32,  Y41Y42) / Y11Y21Y31Y41) 
       =  Y11Y21Y31Y41   Sy({2, 3, 4}; Y12 , Y22 , Y32 , Y42)                                                           (15) 

 
S1S3 = Y11Y21Y31Y41  Sy({3, 4}; Y11Y12 Y13, Y21Y22 Y23, Y31Y32 Y33, Y41Y42 Y43) 
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=    Y11Y21Y31Y41  (Sy({3, 4}; Y11Y12 Y13 , Y21Y22 Y23 , Y31Y32 Y33, Y41Y42 Y43) / Y11Y21Y31Y41 ) 
=  Y11Y21Y31Y41   Sy({3, 4}; Y12 Y13, Y22 Y23, Y32 Y33, Y42 Y43)                                                 (16) 

 
We now  observe that (S1S3  ≤  S1S2) since 
 

Sy({3, 4}; Y12 Y13, Y22 Y23, Y32 Y33, Y42 Y43)  
=  Y12 Y13 Y22 Y23 Y32 Y33 ∨  Y12 Y13 Y22 Y23 Y42 Y43  
∨  Y12 Y13 Y32 Y33 Y42 Y43  ∨  Y22 Y23 Y32 Y33 Y42 Y43 
≤  Y12 Y22 ∨ Y12 Y32 ∨  Y12 Y42  ∨  Y22 Y32 ∨ Y22 Y42 ∨ Y32 Y42 
=   Sy({3, 4}; Y12 ,Y22, Y32 , Y42)  

 
Therefore, the final expression for S{3} is 
 

S{3} =  S1S2  S3  =  (S1S2) (S1S3)  = S1S3 
=  Y11Y21Y31Y41   Sy({3, 4}; Y12 Y13, Y22 Y23, Y32 Y33, Y42 Y43)                                                 (17) 

 
which can be recast in the PRE form  
 

S{3} = Y11Y21Y31Y41 (Z1 Z2 Z3  ∨  Z1 Z2 Z��Z4  ∨  Z1 Z�� Z3 Z4                                       
∨  Z��Z2 Z3 Z4 )                                                                                                                         (18) 

 
where  
 

Zi = Yi2 Yi3 ,  1≤ i ≤ 4                                                                                                                      (19) 
 
and  finally we obtain the expectation E{S{3}} as 
 

E{S{3}} =  p11 p21 p31 p41 ( w1w2w3 + w1w2 (1 — w3) w3w4    + (1 —  w1) w2w3w4)                   (20) 
 
where  
 

wi  =  E{Yi2  Yi3}  =  pi2  pi3 ,    1 ≤  i  ≤  4                                                                                       (21) 
 
Now, the instance S{2} of the multi-state four-valued variable S is (by virtue of  (B.3))  
 

S{2}  =  S1 S2 S�� = S1 ( S2  S�� / S1 )  =  S1 (S2 / S1 ) ( S�� / S1)                                                    (22) 
 
where  (S2 / S1 ) is obtained from (15)  and  (B.3) as  
 

(S2 / S1 ) = Sy({2, 3, 4}; Y12 , Y22 , Y32 , Y42)                                                                            (23) 
 
whose PRE form is 
 

(S2 / S1 ) = Y12 Y22  ∨  Y12 Y32  Y���  ∨ Y12Y42  Y���Y���  
                    ∨  ��� ���Y���  ∨  Y22Y42   Y���Y���   ∨  Y32Y42Y���Y���                                                     (24) 

 
From Table 3, we can write  S�

�   as 
 

S��  =  Sy({0, 1, 2}; Y11 Y12 Y13, Y21 Y22 Y23, Y31 Y32 Y33, Y41 Y42 Y43)                                      (25) 
 

and hence its quotient with respect to  S1 = Y11Y21Y31Y41  is 
 

( S�� / S1 )  =  Sy ({0, 1, 2}; Y12 Y13 , Y22 Y23, Y32 Y33, Y42 Y43) 
= Sy({ 2, 3, 4}; ���  

��������
����, ���  

��������
����, ��� 

��������
����, ���  

��������
����)                                                                       (26) 

which is given be the PRE form 
 

(S�
�  / S1 ) =  ���  

��������
����  ���  

��������
����  ∨  ���  

��������
����  ��� 

��������
���� Y22 Y23  
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 ∨  ���  
��������

����    ���  
��������

����  Y22 Y23 Y32 Y33 ∨  ���  
��������

����   ��� 
��������

����  Y12 Y13 
∨  ���  

��������
����    ���  

��������
����  Y12 Y13 Y32 Y33  

∨   ��� 
��������

����    ���  
��������

����  Y12 Y13 Y22 Y23  
=   ( Y��� ∨ ���Y���) ( Y��� ∨ ���Y���)    
∨  (Y��� ∨ ���Y���) (Y��� ∨ ���Y���) Y22 Y23 
∨  ( Y��� ∨ ���Y���) (Y��� ∨ ���Y���) Y22 Y23 Y32 Y33   
∨  (Y��� ∨ ���Y���) ( Y��� ∨ ���Y���) Y12 Y13 

 ∨  (Y��� ∨ ���Y���) (Y���v���Y���) Y12 Y13 Y32 Y33 

 ∨  (Y��� ∨ ���Y���) ( Y��� ∨  ���Y���) Y12 Y13 Y22 Y23                                                                      (27)    
 
Table 4 is used for ANDing  ( multiplying) the PRE form  (S2 / S1 ) in  (24) and the PRE form  (S�� / S1 ) 
in (27)  to produce a PRE form of (S2S�� / S1 ). For convenience,  each loop (collection of cells) in  
Table 4 is labelled by a certain integer number that we call a loop-characterizing integer. The final 
result for the expectation of S{2} is given by  
 

E{S{2}} = E{S1} E {S2 S�
���� / S1} 

= p11 p21 p31 p41 (p12 p22 ��� ���  + p12 p22  ���(��� + p�����) p23    
+  p12 p22���(��� + p�����) p23 p32 p33  + p 12 p 22 ���( ��� + p�����) p13  

+  p12 p22���(��� + p�����) p13 p32 p33     
+ p12 p22(��� + p�����) ( ��� +  p�����) p13 p23  
+  p12p32������ +  p12 p32 ������ p13   
+ p12 p�����(��� + p�����) p13 p33  + p12 p42 ���������  
+ p12 p42 ������ p13   +  p�� p����� ��� +  p22 p32������ p23  

+  p�� p�����(��� + p�����) p 23 p 33   + p22 p42 ���������  
+ p22 p42������ p23   + p32 p42 ������                                                                                       (28) 

 

5. THE HOMOGENEOUS CASE 
 
In this case of independent identically-distributed (i.i.d.) binary components Yij ,  all components share the 
same reliability            
                                    

E{Yij} =  p            (1 ≤ i ≤ 4,  1 ≤ j ≤ 3).                                                                               (29) 
 
The i.i.d. reliability of the three stations become  

 

E{S1} =    P4                                               (30) 
 

E{S2} = 6p6 —  8 p6 + 3p8                        (31) 
 

E{S3} =    4p9 —  3 p12                             (32) 
 

Fig. 4 demonstrates the change of each of these 
expectations versus p for p Є [0.0, 1.0]. The 
quantity E{S1} represents a series system whose 
reliability polynomial is a monomial of a type-I 
graph through the two points (0.0, 0.0) and (1.0, 
1.0) and with no inflection point within the interval 
(0.0, 1.0). Each of the quantities. E{S2} and E{S3} 
has the typical S-shape (type II) curve of  a 
coherent system, which passes through (0.0, 0.0) 
and (1.0, 1.0) and has a single inflection point 
within the interval (0.0, 1.0). 
 

The four possible values of the multi-state 
system has (i.i.d.) expectations 

E{S(0)} = 1 — p4                                       (33) 
 

E{S(1)} = p4 (4 q3 —  3q4) = p4 —  6 p6 + 8p7 

— 3 p
8
         (34) 

 
E{S(2)} = 6p6—  8 p7 + 3p8 —  4p10 + 3p12   

(35) 
 

E{S(3)} = p
10

 [1 + 3(1 — p
2
)] = 4p

10 
—  3 p

12 

(36) 
 
which add to 1 for all p Є [0,1]. Fig. 5 shows a 
plot of E{S{0}}, E{S{1}}, E{S(2)}and  E{S(3)} 
versus p for p Є [0,1]. The figure shows that S{0} 
behaves like a coherent binary failure while S{3} 
acts like a coherent binary success. Both S{1} 
and S{2} have a general non-coherent behavior, 
which somewhat mimics that of a k-to-l-out-of-n: 
G system [39]. 
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Table 4. Multiplication (ANDing) table that multiplies the PRE forms of (S2 / S1) and (��
��� / S1) to 

produce  a PRE form of  (S2 ��
���� / S1) 

 

 
 

6. KARNAUGH-MAP VERIFICATION 
 

Despite the large number of input variables 
involved (twelve variables), we are able to verify 
our results by utilizing Boolean quotients and 8-
variable Karnaugh maps. First we note that the 
four instances of S form an orthonormal set. In 
particular, we have  
 

S(1) ∨ S(2)  ∨ S(3) =  S(0)������  =  Y11Y21Y31Y41                                            
(37) 

 

and, hence, in terms of  Boolean quotients, we 
have 
 

S(1) / Y11Y21Y31Y41  ∨  S(2) / Y11Y21Y31Y41   
        ∨ S(3) / Y11Y21Y31Y41 =  1                                                              

(38)  
 

The identity   (38)   is independent of the four 
variables Y11 ,Y21  ,Y31 , Y41 and hence it involves 
only eight of the twelve Yij  variables, This means 
that any of the three Boolean quotients in (38)  is 
a function of the eight variables {Yi2 , Yi3},   
1≤ i ≤ 4 .   Fig. 6 shows an 8-variable Karnaugh 
map which shades the cells in which  S{1} / 
Y11Y21Y31Y41   is asserted, while Fig. 7 shows a 

similar map which shades the cells for in which  
S{3} / Y11Y21Y31Y41  is equal to 1. Fig. 8 is a 
verification of the identity (38). It borrows 
shadings (in light grey and dark blue, 
respectively) for the two Boolean quotients   S{1} 
/ Y11Y21Y31Y41  and  S{3} / Y11Y21Y31Y41 from 
Figs. 6 and 7. The remaining cells in Fig. 8 
represent S{2} / Y11Y21Y31Y41  as obtained in  
Table 4. We use various colors in Fig. 8 to label 
the 17 entries in Table 4, each identified by  the 
integer assigned in Table 4. For example, entry 
number 1 in Table 4 is Y12 Y22 Y�13  Y�23   is 
depicted in Fig. 8 by a square of 16 cells in light 
yellow that is distinguished by the loop-
characterizing integer 1. Fig. 8 nicely verifies the 
identity (38). It also shows that our PRE 
representation of S{2} / Y11Y21Y31Y41  is almost 
minimal, but not perfectly minimal. In fact, we 
could have used the Karnaugh map in Fig. 8 
(albeit with difficulty) to derive (and not only 
verify) an expression for S{2} / Y11Y21Y31Y41 . The 
amp would have produced an equivalent (but 
slightly better) version of the results in Table 4, 
for which the two loops 10 and 11 are combined 
into a single loop and likewise the two loops 15 
and 16 are also combined into a single loop. 
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Fig. 4. Three graphs of E{S1}( type-I), E{ S2 }(type-II) and E{S3}( type-II ) versus p. 
 

 
 

Fig. 5. A plot of  E{S(0)}, E{S(1)}, E{S(2)} and  E{S(3)} versus p for p Є [0,1]. 
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Fig. 6. An 8-variable Karnaugh map with the shaded cells depicting the Boolean quotient  
 S(1) / Y11 Y21Y31Y41 

 

 
 

Fig. 7. An 8-variable Karnaugh map with the shaded cells indicating the Boolean quotient  
 S(3) / Y11 Y21Y31Y41 
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Fig. 8. An 8-variable Karnaugh map verifying the identity (38) . Asserted cells for  
 S(1) / Y11 Y21Y31Y41 ( Fig. 6 ) are shaded in light grey and those for  S(3) / Y11 Y21Y31Y41 are 

marked in dark blue. Other colors in the map label loops for the 17 entries in Table 4, each 
identified by its assigned integer in Table 4. 

 

7. COMPARISON WITH PREVIOUS WORK 
 
The problem handled herein was solved via multi-state techniques by Tian et al. [19] and later by Mo 
et al. [22]. Both teams of authors used as inputs a certain matrix P, which is equivalent to the following 
input expectations 

 

[E{Xi{j}}] =�

. 0�0 . 0��0

. 0�0 . 0��0
. 0��� . ����
. 0��� . ����

. 0�0 . 0���

. 0�0 . 0���
. 0��� . ����
. 0��� . ����

�    (1≤ i ≤ 4 , 0 ≤  j ≤ 3)                                              (39) 

 
which can be translated (via Table 2) to the following input expectations, for ( 1≤ i ≤ 4 , 1 ≤  j ≤ 3) 
 

[E{Yij}] =  � 

. ��0000000000000 . �00000000000000 . ��0000000000000

. ��0000000000000 . �00000000000000 . ��0000000000000
 . ��0000000000000 . ��0000000000000 . ���������������
 . ��0000000000000 . ��0000000000000 . ���������������

�                   (40) 

 

[E{���
��� }] = �

. 0�0000000000000 . �00000000000000 . 0�0000000000000

. 0�0000000000000 . �00000000000000 . 0�0000000000000
 . 0�0000000000000 . 0�0000000000000 . 0��������������
. 0�0000000000000 . 0�0000000000000 . 0��������������

�                    (41) 
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Table 5. Comparison of the present results with those in earlier work 
 

Expectation of Tian et al.[19] Mo et al.[22] Our results 
S(0) 0.1508 0.150838 0.150837750000000 
S(1) 0.0023 0.002282 0.002282548128000 
S(2) 0.0892 0.089181 0.089180866435691 
S(3) 0.7577 0.757699 0.757698835436309 
Total 1.0000 1.000000 1.000000000000000 

 
Table 5 compares our results for this specific 
input with the earlier results of Tian et al. [19] and 
later by Mo et al. [22]. The three sets of results 
are essentially the same, despite the existence of 
differences of precision. Though a precision of 
four significant digits would suffice in practical 
situations, we have deliberately used an 
exaggerated precision of fifteen significant digits 
so as to make sure round-off errors in our 
calculations are definitely negligible. This 
exaggerated precision is really unwanted, but it 
could be beneficial in assessing the effect of 
round-off errors in any comparable future 
computation. 
 
In passing, we observe that the Karnaugh map 
proved to be a handy and powerful tool for our 
current application. Other related uses of the  
Karnaugh map (beyond its conventional use in 
digital design) are also available (see, e. g., [28, 
29, 31, 32, 45-49]). The variant of the map used 
herein is the Conventional Karnaugh Map (CKM). 
Other important map versions include the 
Variable-Entered Karnaugh Map (VEKM) (see, e. 
g. , [28, 29, 31, 34, 45]), and the Multi-Valued 
Karnaugh Map (MVKM) (see, e. g. , [45]).  
 

8. CONCLUSIONS 
 
This paper demonstrated how MSS reliability can 
be handled via switching-algebraic tools. A 
classical MSS problem was manually analyzed 
by reformulating its multi-valued inputs as 
equivalent physically-meaningful binary 
variables. The paper resorted only to binary 
concepts and tools including those of probability-
ready expressions, Boolean quotients, 
disjointness, shellability, Boolean multiplications, 
and relatively large Karnaugh maps. Results 
obtained are not only satisfactory but replicate 
earlier results with more precision. 
 
This paper is admittedly somewhat long. Our 
justification for this is that we strived to make the 
paper a self-contained pedagogical tutorial. We 
tried to give detailed and clear explanations 
whenever needed, and to establish a clear and 
insightful interrelationship between binary 

modeling and MSS modeling. Our results provide 
a truly independent means to check and verify 
future solutions of a standard MSS problem. A 
significant contribution of the paper is that, while 
handling MSS reliability modeling, it successfully 
pushed mathematical tools of binary reliability 
modeling to their utmost utility.  
 

Though the Conventional Karnaugh Map (CKM) 
used herein would have sufficed to completely 
solve the problem at hand, we opted for an 
algebraic solution, and employed the CKM in a 
verification role only. We avoided the need to 
construct a 12-variable Karnaugh map for certain 
functions by choosing to represent Boolean 
quotients of these functions, thereby reducing 
our task to one of constructing an eight-variable 
Karnaugh map, which (albeit relatively large) was 
reasonably manageable. An alternative way to 
handle the mapping of our 12-variable functions 
is to use the Variable-Entered Karnaugh Map 
(VEKM). Yet another map method (for handling 
the MSS reliability problem) is a method 
employing a Multi-Valued Karnaugh Map 
(MVKM).  
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APPENDIX A: A VERBAL DESCRIPTION OF THE SOLVED EXAMPLE 
 
Consider the commodity-supply system discussed in [19,21,22]. As shown in Fig.1, a certain 
commodity-supply system is delivered from the commodity source to three stations through four 
commodity pipelines. Both the system and each pipeline have four states, which are defined in          
Table (A.1). The states of each pipeline is defined according to which station the commodity supply  
will be able to reach via this pipeline, and the states of the system is defined according to whether the 
demands of up to a certain station can be met. Different stations have different demands on the 
commodity. Station 1 requires at least four pipelines working to meet its demand; Station 2 requires at 
least two pipelines working to meet its demand; Station 3 requires at least three pipelines working to 
meet its demand. Thus, this commodity supply system can be regarded as a multi-state k-out-of-n 
system with n = 4, M = 3, k1 =  4, k2  =  2, and k3 = 3. 
 

Table (A.1). Description of component/ system states of  the commodity-supply system 
analyzed herein. 

 

State of pipeline i Meaning  System state Meaning 
0 Commodity  cannot 

reach any station 
0 No commodity demand of any 

station is met 
1 Commodity can reach up 

to station 1 via pipeline i 
1 System can meet the commodity 

demand of up to station 1 
2 Commodity can reach up 

to station 2 via pipeline i 
2 System can meet the commodity 

demand of up to station 2 
3 Commodity can reach up 

to station 3 via pipeline i 
3 System can meet the commodity 

demand of up to station 3 
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APPENDIX B: USEFUL PERTINENT CONCEPTS 
 
Probability-Ready Expressions: A probability-Ready Expression (RRE) [42] is an expression in the 
switching (Boolean) domain that can be directly transformed, on a one-to-one basis,  to its Real or 
Probability Transform by replacing switching (Boolean) indicators by their statistical expectations, and 
also replacing logical multiplication and addition (ANDing and ORing) by their arithmetic counterparts. A 
switching expression is a PRE expression if  
 

a) all ORed terms are disjoint, and  
b) all ANDed sums are statistically independent. 

 
Boolean Quotient:  Given a Boolean function � and a term t, the Boolean quotient of � with respect to t, 
denoted by (�/�), is defined to be the function formed from � by imposing the constraint {t = 1} explicitly 
[50], i.e.,  
 

�/� =  [�]���,                                                                                                                                                   (B. 1) 
 
The Boolean quotient is also known as a ratio, a subfunction, or a restriction. Brown [50] and Rushdi & 
Rushdi [42] list several useful properties of Boolean quotients. A fundamental property of the Boolean 
quotient states that a term ANDed with a function is equal to the term ANDed with the Boolean quotient of 
the function with respect to the term, namely. 
 

�∧ �  = �  ∧  (�/� )                                                                                                                                           (B. 2) 
 
If the term � is  a factor of  the function � (i. e. , � =   � ∧  � ), then (B.2) takes the simpler form (frequently 
utilized in this paper) 
 

�  = �  ∧  (�/� )                                                                                                                           (B.3) 
 

A Multi-State Coherent System 
  
A coherent MSS is a system possessing the three properties: 
 

1. Causality : The system is in state “0” if all of its components are in state “0”, and the system 
is in state “M” (the highest possible state) if all of its components are in state “M”, i.e., 

 
         S(0)  =  0 and S(M) = M .                                                              (B.4) 
 
2. Monotonicity : The system state is non-decreasing with the increase of each component 

state, i.e. ,  
   S(X) ≥  S(Y)  if  X  ≥  Y .                                                               (B.5) 
 
3. Relevancy: No system component is a dummy one , i.e. , each system component  i  has at 

least one instance in which it produces a change in system state, i.e., S(X | Xi = j1 ) >  S(X | Xi 
= j2 ) when       j1  >  j2  for a certain value X / Xi  of inputs other than Xi 

 
A Multi –State k-out-of-n system: There are different definitions for a multi-state k-out-of-n system 
that ensure it is a coherent system. Here, we follow reference [22], which states that “An n-component 
coherent multi-state system is called k-out-of-n: G system if  S(X) ≥  j ( 1 ≤ j ≤ M) whenever at least km 
components are in state m or above for all m such that  1 ≤ m ≤ j”. A multi-state k-out-of-n: G system 
is called a decreasing k-out-of-n: G system if k1 > k2 > …> kM . The dual of a multi-state k-out-of-n: G 
system is the multi-state k-out-of-n: F system. 
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APPENDIX C: SUCCESS OF A K-OUT-OF-N: G SYSTEMS 
 
A symmetric switching function (SSF) [35, 37, 51-59] 
 

�  =  Sy(A; X) = Sy({a1 , a2 , …., am };  X1 , X2 …., Xn)                                                            (C.1) 
 
is specified via its characteristic set  
 

A  = { a1, a2, …., am} ⊆   {0, 1,2,…..,n}                                                                                (C.2) 
 
and its inputs X= [X1, X2, …., Xn ]

T . This function has the value 1 iff 
 

∑ �� 
�
��� = ��   , 1 ≤ i ≤  �   < (n+1)                                                                                     (C.3)    

 
and has the value 0 otherwise, The complement  � ̅ of the above SSF has a characteristic set defined by 
the set difference  
 

 ��  =  {0, 1, 2, ….., n} — {a1, a2, …., am}                                                                                (C.4) 
    
The SSF � in ( C.1) can be expressed in terms of complemented arguments  
 
��  = [ X�� ,  X�� ,…. , X�� ] for a complemented characteristic set given by 
 
{n — am , ….., n — a2 , n — a1}, i.e.,    
 

  � =   Sy({n — am , ….., n — a2, n — a1};   X�� , X�� ,…. , X�� )                                                  (C.5)   
                                                    
The success S (k, n, X) of a k-out-of-n: G systems is a monotonically non-decreasing symmetric 
switching function of a characteristic set   {k, k+1, …, n}, i.e., it is given by [35, 38] : 
 

S (k, n, X)  =  Sy({k, k+1, …, n}; X )                                                                                 (C.6) 
 
where Sy(A,X) is a symmetric switching function of characteristic set A. Rushdi [35] showed that   S 

(k, n, X) has the same minimal sum and complete sum, with  ��
�

� prime implicants, given by 

 
S (k, n, X)  = ∨ Xi1  Xi2  …. Xik                                                                                          (C.7) 

 
Where the ORing in (C.7) is taken over subsets of size k of the set of first n positive integers, i. e. ,  { 
i1, i2, …, ik} ⊆  {1,2,…, n}. In other words, the set  { i1, i2, …,ik} consists of k elements selected from the 
set of first n positive integers, where order does not matter and repetition is not allowed. Rushdi [35] 
also showed that  S (k, n, X) can be written in a disjoint sum-of-products Sdis (k, n, X) form without 

increasing the number ��
�

� of implicants in (C.7), a property later designated as shellability  [60-68].  

Rushdi and Alturki [43] showed that in going from S to Sdis there is ����
�

� = 1 term that remains intact, 

and there are  ��
�
� = �   terms, which are each augmented with a single complemented literal. In 

general there are ����
���

� terms that are each augmented with n complemented literals, where k ≤ � ≤ � 

, where  
 

��
�

� =  ∑  ����
���

��
���                                                                                                              (C.8) 

 
Fig. C.1 demonstrates the symmetric non-decreasing function representing S(2, 4, Z). The minimal 
sum (or complete sum) for this function is  : 
 

Sy({2, 3, 4}, Z) =  Z1 Z2 v  Z1 Z3 v Z1 Z4 v  Z2 Z3 v Z2 Z4 v  Z3 Z4                                       (C.9) 
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This function is a disjunction of  ��
�
�  = 6 prime implicants, each being a product of two 

nucomplemented literals. This function is shellable and has a disjoint PRE form given by  
 

 Sy({2, 3, 4}; Z) = Z1 Z2  ∨  Z1��
���

 Z3  ∨  Z1 ��
���

 ��
���

 Z4 ∨ ��
���

 Z2 Z3   ∨       ��
���Z2��

���Z4   ∨  ��
�����

���Z3Z4   (C.10) 
 
In going from (C.9) to (C.10), the number of terms remains the same (6), the first term remains intact, 

k = 2 terms are each augmented with a single augmented literal and ����
���

� = 3  terms are each 

augmented with two complemented literals. 
 
Fig. C.2 replicates the demonstration in Fig. C.1 for S(3, 4, Z)  = Sy({ 3, 4}; Z). The minimal sum ( or 
complete sum) for this function is  
 

Sy({3, 4}; Z) = Z1 Z2 Z3  ∨  Z1 Z2 Z4  ∨  Z1 Z3Z4  ∨  Z2 Z3 Z4                                                (C.11) 
 

This function is a disjunction of  ��
�
�  = 4 prime implicants, each being a product of three 

uncomplemented literals. Again, this function is shellable and has a disjoint PRE form given by 
 

Sy({3, 4}; Z) = Z1 Z2 Z3 ∨  Z1Z2��
���

 Z4 ∨ Z1 ��
���

 Z3Z4   ∨ ��
���

 Z2 Z3Z4                                        (C.12) 
 
In going from (B.6) to (B.7), the number of terms remains the same (4), the first term remains as it is 

while the  ����
���

� = 3 other terms are each augmented with a complemented literal. 

 
Finally, we use Fig. C. 3 to show the Karnaugh map for S(0) given by  
 

S(0) = Sy({0, 1, 2, 3};   Y��� ∨  Y��� ∨  Y��� ∨ Y���  )                                                              (C.13) 
 
The map uses four loops to cover the 1 entries as a sum of four products 
 

S(0) = Y��� ∨  Y��� ∨  Y��� ∨ Y���                                                                                          (C.14) 
 

 
 

(a) Sy({2, 3, 4}; Z) =  Z1 Z2  ∨  Z1 Z3  ∨  Z1 Z4  ∨  Z2 Z3  ∨  Z2 Z4 ∨ Z3Z4 



 
 
 
 

Rushdi and Al-Amoudi; JERR, 3(3): 1-22, 2018; Article no.JERR.46379 
 
 

 
21 

 

 
 

(b) Sy({2, 3, 4}; Z) = Z1 Z2  ∨  Z1��
���

 Z3  ∨ Z1 ��
���

 ��
���

 Z4  ∨  ��
���

 Z2 Z3  ∨  ��
���

 Z2 ��
���

 Z4  ∨  ��
���

 ��
���

  Z3 Z4 

 
Fig. C.1. Karnaugh maps for the symmetric monotonically non-decreasing function 

representing at least 2 good component out of 4. The map in (a) has overlapping loops and the 
map in (b) has disjoint ones. 

 
 

(a) Sy({3, 4}; Z) = Z1 Z2 Z3 ∨  Z1 Z2 Z4 ∨ Z1 Z3Z4  ∨  Z2 Z3 Z4 
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(b) Sy({3, 4}; Z) =  Z1 Z2 Z3  ∨ Z1Z2��
���

 Z4  ∨  Z1 ��
���

 Z3Z4  ∨  ��
���

 Z2 Z3 Z4 
 

Fig. C.2. Karnaugh maps for the symmetric monotonically non-decreasing function 
representing at least 3 good component out of 4. The map in (a) has overlapping loops and the 

map in (b) has disjoint ones. 
 

 
 

Fig. C.3. The Karnaugh map for S(0), which is expressed as a single essential prime indicate as 
a product of sums or, equivalently, as four essential prime implicants as a sum of products. 

 

The map also uses a single loop to cover the 0 entry as a product of a single sum, thereby producing 
the same expression in (C.14). 
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