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Abstract

We solve the equations of two-dimensional hydrodynamics describing a circumbinary disk accreting onto an
eccentric, equal-mass binary. We compute the time rate of change of the binary semimajor axis a and eccentricity e
over a continuous range of eccentricities spanning ¢ =0 to e = 0.9. We find that binaries with initial eccentricities
€9 S 0.1 tend to e =0, where the binary semimajor axis expands. All others are attracted to e = 0.4, where the
binary semimajor axis decays. The e ~ 0.4 attractor is caused by a rapid change in the disk response from a nearly
origin-symmetric state to a precessing asymmetric state. The state change causes the time rates of change a and ¢ to
steeply change sign at the same critical eccentricity resulting in an attracting solution where @ = é = 0. This does
not, however, result in a stalled, eccentric binary. The finite transition time between disk states causes the binary
eccentricity to evolve beyond the attracting eccentricity in both directions resulting in oscillating orbital parameters
and a drift of the semimajor axis. For the chosen disk parameters, binaries with ¢y 2 0.1 evolve toward and then
oscillate around e =~ 0.4 where they shrink in semimajor axis. Because unequal mass binaries grow toward equal
mass through preferential accretion, our results are applicable to a wide range of initial binary mass ratios. Hence,
these findings merit further investigations of this disk transition; understanding its dependence on disk parameters
is vital for determining the fate of binaries undergoing orbital evolution with a circumbinary disk.
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1. Introduction

The interaction of a binary and a gas disk arises in a wide
range of astrophysical scenarios. Namely, the birth and
evolution of stellar and planetary systems (e.g., Mathieu et al.

1997; Alves et al. 2019; Martin 2019); formation channels for
compact-object-binary mergers (Tagawa et al. 2020; Li et al.
2021) presently being detected in gravitational waves (Abbott
et al. 2019); and the hardening of supermassive black hole
binaries and the final parsec problem (Begelman et al. 1980;
Gould & Rix 2000; Armitage & Natarajan 2002), crucial for
understanding the low frequency gravitational-wave sky
including the gravitational-wave background probed by the
Pulsar Timing Arrays (Arzoumanian et al. 2020), and the
supermassive black hole binary merger rate by LISA (Amaro-
Seoane et al. 2017).

The gas-disk interaction dictates not only electromagnetic
signatures of the binary (e.g., Haiman et al. 2009; D’Orazio
et al. 2015; Tofflemire et al. 2017), but also its orbital
evolution. The former provides a means for observational
identification and system characterization, while the later is a
main ingredient in population synthesis schemes needed to
understand observed populations (e.g., El-Badry et al. 2019;
Price-Whelan et al. 2020) as well as extrapolate to the
undiscovered (e.g., Kelley et al. 2019).

Here we focus on binary orbital evolution in the limit of a
thin circumbinary disk accreting onto an equal-mass, eccentric
binary. The majority of recent work in this effort has focused
on circular orbit binaries, measuring relative accretion rates
onto binary components and the gas-induced torque on the
binary as a function of mass ratio. Recently, a commonly held
picture of gas driving binaries toward inspiraling circular orbits
(Armitage & Natarajan 2002; MacFadyen &

Milosavljevi¢ 2008) has been called into question. This is
due to a number of works carrying out high resolution
simulations and enacting a careful analysis of angular
momentum transport through the disk onto the binary to find
expanding binary orbits (Miranda et al. 2017; Tang et al. 2017;
Moody et al. 2019; Mufioz et al. 2019; Duffell et al. 2020;
Muiioz et al. 2020), although dependence of these results on
hydrodynamic parameters is less explored (but see Duffell et al.
2020; Heath & Nixon 2020; Muiflioz et al. 2020; Tiede et al.
2020). In particular, Duffell et al. (2020; hereafter DD20) study
the mass accretion and torque on circular orbit binaries with
mass ratios continuously spanning the range of 1:100 to
unity. DD20 shows that preferential accretion (as found in a
number of works, e.g., Bate 2000; Farris et al. 2014) acts to
drive all such binaries toward 1:1 mass ratios, but that only
binaries below mass ratios of ~1:20 are driven together; above
this, binaries expand outwards. Mufoz et al. (2020) present a
similar picture finding expanding orbits for g = 0.2.

How does orbital eccentricity evolution affect this picture?
While previous work has suggested that binary eccentricity
growth may be important (Roedig et al. 2011; Miranda et al.
2017; Muifioz et al. 2019), only recently did Zrake et al. (2021)
measure the time rate of change of eccentricity for equal-mass
binaries over a large range of eccentricities, finding that
initially low eccentricity systems tend toward circular orbits,
while higher initial-eccentricity systems tend toward eccentri-
cities of e ~ 0.45. That work did not explore binary semimajor-
axis evolution, however, and hence, leaves the fate of such
binaries uncertain.

In this Letter we carry out high resolution hydrodynamical
calculations to measure gas-induced orbital eccentricity evol-
ution over a continuous range of binary eccentricities spanning
0.0-0.9, and for the first time, we compute the corresponding


https://orcid.org/0000-0002-1271-6247
https://orcid.org/0000-0002-1271-6247
https://orcid.org/0000-0002-1271-6247
https://orcid.org/0000-0001-7626-9629
https://orcid.org/0000-0001-7626-9629
https://orcid.org/0000-0001-7626-9629
mailto:daniel.dorazio@nbi.ku.dk
http://astrothesaurus.org/uat/1963
http://astrothesaurus.org/uat/1579
http://astrothesaurus.org/uat/154
http://astrothesaurus.org/uat/678
https://doi.org/10.3847/2041-8213/ac0621
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ac0621&domain=pdf&date_stamp=2021-06-15
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/ac0621&domain=pdf&date_stamp=2021-06-15

THE ASTROPHYSICAL JOURNAL LETTERS, 914:L.21 (8pp), 2021 June 10

binary semimajor-axis evolution rate needed to predict the fate
of binaries at all eccentricities. Probing orbital element
evolution over a continuous eccentricity range allows us to
identify a steep transition in the disk and binary response that is
responsible for the structure of attracting eccentricity solutions
identified in Zrake et al. (2021).

2. Numerical Methods

Our set-up follows that of DD20 except that we vary the
binary eccentricity at a fixed binary mass ratio of unity. We
highlight the pertinent points below but refer the reader
to DD20 and Duffell (2016) for more details.

We use the moving mesh code DISCOto solve the 2D
equations of viscous, locally isothermal hydrodynamics in the
influence of the time changing gravitational potential of a
binary on a fixed orbit. The relevant parameters setting the
binary gravitational potential are the binary mass ratio
q=M/M; <1;M;+M>,=M, and the orbital eccentricity
0<e<1. We choose units of G=M=1 and binary
semimajor axis a=1, so that one orbit of the binary is
271a3/2/JGM = 27Q)~' = 27 in our units, for binary orbital
frequency 2. Two remaining parameters characterize the
isothermal fluid flow, the Mach number M, and the coefficient
of kinematic viscosity v.

The locally isothermal nature of the disk is enforced by
setting the sound speed to a fixed function of the coordinates,

J& + 0,
e VI (D

where ®; is the gravitational potential of the ith binary
component. The gravitational potential is smoothed below the
length scale s = 0.5a/ M = 0.05aq,

GM;
= ——, @)

1/ |fL,'j|2 + S2

as required for a consistent representation of the 3D potential in
the vertically averaged limit (Miiller et al. 2012). Here |#;| is the
distance from the ith cell to the jth binary component.

This prescription ensures that the sound speed approaches
values expected for a constant Mach number and Keplerian
fluid velocities throughout the disk. We choose a fiducial Mach
number of M = 10. For a disk in vertical hydrodynamic
equilibrium this corresponds to a disk aspect ratio
of H/r = M~ =0.1.

We choose a disk with a constant coefficient of kinematic
viscosity v = 1O*3a29, different from v of the standard o-
prescription. In terms of which, v = a/M?a*Q, and our
choice of v corresponds to aw=0.1 at r =a. This results in a
viscous time at r =a of %az/y ~ 10627,

We use a log grid in the radial coordinate with a fiducial
choice of 512 radial cells and an outer boundary at roy = 50a
providing a resolution of ér=a0.016a at r=a and ranging
between 6r=0.01-0.02a for the extremes of binary orbital
radii simulated here. We set the number of azimuthal cells at
each radius to enforce equal cell aspect ratios.

The initial fluid variables constitute a uniform surface
density ¥y, a Keplerian orbital velocity for r >a and rigid
rotation with the binary for r <a. The radial velocity is
initialized at the viscous drift rate —%u / r.
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Gas is removed from a region surrounding each binary
component using the sink prescription of DD20. The density of
the ith cell is removed as,

_ aal el
. Wz(exp ( (zs)4)+exp ( <2s>4))’ )

for mass removal rate 7. We choose a fiducial value v = 1.0€2.
The scale of the sink radius is chosen to be twice the
gravitational smoothing length.

Our fiducial calculations fix the binary mass ratio at g = 1.0
and vary the binary eccentricity. We first fix the orbital
eccentricity to e =0 and run for 500 orbits until we find an
approximate steady state in the measured diagnostics discussed
below. We use the output from this e =0 run to initialize a
calculation that slowly grows the binary eccentricity from
eo =0 to e. We choose e such that binary pericenter is always
greater than two smoothing lengths, a(l — ey = 2s, resulting in
e, =0.9. We vary the binary eccentricity linearly in time,

e(t) = e + : @)

™ max

for a total run lasting n., binary orbits. We choose
Rmax = 2 X 10* based on agreement with constant eccentricity
runs (see Figure 1), and a study that compared results® for
Nmax = 5 x 103, 10*, and 2 x 10*. As the binary sweeps
through this continuous range of eccentricities, we measure the
rate of change of binary orbital semimajor axis d(e) and
eccentricity é(e).

2.1. Diagnostics

The specific energy and angular momentum of the binary are

€= —G—M, 12 = GMa(1 — €?).
2a
Differentiation with respect to time gives the binary evolution
equations in terms of the specific torque / and power ¢ applied
to the binary by the gas®,

a M ¢
B a——— 5
a M € )
Y .

PR Sl PYU BN ) (6)
2e M € [

The accretion rate onto the binary, M, is measured using the
above sink prescription. The specific power is computed by
differentiating €= %i‘b -Fp — GM / b, using that
Py =f, — (GM [r))ry,

, GM
E=vf, — —, (7

Tp

3 For larger n,.x we find steeper transitions between disk states and a
decreasing level of noise in the orbital evolution rates. Away from the disk
transitions at e ~ 0.2 and e =~ 0.4, d/a and é have the same average value for
all npax.

4 Equivalent expressions written in terms of the total binary energy E and
angular momentum L, can be recovered by using that L = pl and E = pe, for
reduced mass (.
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Figure 1. @ and é (thick purple and orange lines) measured from our fiducial calculation overlaid with the results of constant eccentricity runs (circles). The fitting
function for ¢ from Zrake et al. (2021; Z21) is plotted as the gray dashed line. The results from Muifioz et al. (2019; M19) are plotted as x’s with the same a (purple), &
(orange) color scheme. The gray shaded region is where twice the smoothing length becomes equal to the approximate size of the mini-disk at pericenter.

for time-dependent binary separation r;,. The specific torque is
found from differentiating [ = ry X Fyp,

i=ryxf,. 8)

The acceleration of the binary induced by the gas is measured
directly as,

= GY; ,
fo =220 dVi——=1j;, ©)

j=1 i |"ii|2

where the first sum is over each cell with volume dV; and gas-
surface density YJ;, and the second sum is over the binary
components with %; the unit vector pointing from binary
component to cell. As the equations are scale free in the
density, we normalize our results below in terms of the steady-
state accretion rate at infinity My = 37X, v, and the total binary
mass M (Muiioz et al. 2019). We do not include a force caused
by anisotropic accretion of momentum (e.g., f,.. in Mufioz
et al. 2019) as we estimate its contribution to our main results
to be minimal for the small sinks used here (see further
discussion in Section 4).

To compute a time-averaged orbital evolution at a given
value of e, and to arrive at the curves in Figure 1, we smooth
the oscillating, raw output, which is computed 100 times per
orbit.” We compute ¢ and ¢ from this output via Equation (6)
and then apply a Saviztky—Golay filter, which employs a third-
order polynomial fitting with smoothing wavelength chosen to
be ~444 orbits, unless noted otherwise. This is chosen to
approximately coincide with a viscous time at r=2a, the
cavity precession time (Section 3.1), and Ae = 0.02.

For our fiducial calculations, where we grow the eccentricity
linearly in time, we apply this smoothing across the time series
after the initial 500 orbits where e =0. For the constant
eccentricity runs, we allow & and é to reach a quasi-steady
state, and apply the same smoothing to the final ~1000 orbits
of these runs. The mean and standard deviation of the

5 Increasing this to 1000 times per orbit does not affect our results.

smoothed output are taken to build the scatter points and error
bars in Figure 1.

3. Results
3.1. Orbital Semimajor Axis and Eccentricity Evolution

Figure 1 displays our primary result, the orbital semimajor-
axis and eccentricity evolution of the binary as a function of
eccentricity. We plot a(e) in purple and é(e) in orange. Also
plotted in Figure 1 are results of constant eccentricity runs for
e = {0.02, 0.1, 0.3, 0.4, 0.6}. Figure 1 also compiles results
of the most directly comparable studies, the fitting function for
é from Zrake et al. (2021; dashed gray line) and results from
Table 1 of Muifioz et al. (2019). The gray shaded region
delineates where the gravitational smoothing length is larger
than the mini-disk size, approximated by adapting the
numerical fit for circular orbits from Roedig et al. (2014),
ra~0.27a(1 — e)q">. Here forces exerted by gas in the mini-
disks are likely less accurate.

Because both ¢ and ¢ depend only on e, it is the orange ¢
curve that dictates the binary’s time evolution. The quantity ¢ is
negative for ¢ < 0.07 and e 2 0.39 and positive in between, and
nearly constant for 0.2 < e <0.39. A defining feature of both
curves is a steep change in behavior near ¢ =0.2 and ¢ =0.4.
The first of which results in a change in sign of ¢ at e = 0.2 and
an increase in é by a factor of 8, the second of which results in
the rapid change in sign of both ¢ and a causing both to become
zero at e~ 0.39. Note how the continuous eccentricity
approach reveals the steepness of the e=0.2 and 0.4
transitions.

To elucidate the cause of this behavior, Figure 2 displays
snapshots of log-gas-surface-density when the binary is at
pericenter for binary eccentricities representative of four
regimes separating distinct disk responses:

(i) Circular binary, lopsided disk (e < 0.1). The left panel of
Figure 2 shows the lopsided disk structure reported in many
works that consider e =0, g =1 binaries (e.g., MacFadyen &
Milosavljevi¢ 2008; Shi et al. 2012; D’Orazio et al. 2013, to
name a small subset). This constitutes an elongated cavity that
precesses on a much longer timescale than the orbital period
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Figure 2. Log-surface-density snapshots at pericenter for the fiducial calculation, which linearly increases orbital eccentricity from e = 0 to e = 0.9 over 2 x 10*
binary orbits. We display a representative snapshot from each of the regimes (i)-(iv) discussed in Section 3.1. The binary components and their orbital tracks are

plotted in green.

and is punctuated by an overdensity that orbits the cavity edge
once every ~5 orbits (e.g., D’Orazio et al. 2015).

(ii) Mildly eccentric binary, asymmetric disk (0.1 S e <0.2).
In the second panel of Figure 2, the overdensity and
corresponding ~5 orbit accretion-rate periodicity disappears,
but the elongated, precessing cavity remains.

(iii) Eccentric binary, origin-symmetric disk (0.2 <e <0.4).
When the binary reaches an eccentricity of e ~ 0.2, the cavity
elongation is diminished giving rise to a disk with symmetry
about the origin X(x, y) — 3X(—x, — y);the third panel in
Figure 2 shows nearly equal strength streams reaching the
binary from both sides of the cavity.

(iv) Highly eccentric binary, asymmetric disk (e 2 0.4).
Above e ~ 0.4, the disk again becomes elongated and precesses
slowly around the binary. At these larger eccentricities
(especially for e 2 0.5), the density structure in the cavity is
generally more complex due to the eccentric binary spanning a
larger range of separations over the course of its orbit as it pulls
in gas streams and propels them back out to shock into the
surrounding disk (see also Mosta et al. 2019).

Delineation into these regimes is further supported by
Figure 3. The top two panels of Figure 3 show the smoothed
specific torque per specific binary angular momentum and the
specific power per specific binary energy. Each panel shows
contributions from each binary component in red and blue with
the total in black. In the first two regimes, for ¢ < 0.2, and in
the high eccentricity regime, for e 2 0.4, the precession of the
cavity can be seen in the completely out of phase oscillations of
the (red and blue) component-wise quantities.

Disk precession causes these oscillations because, relative to
the binary center of mass, there is a near side and a far side to
the asymmetric disk structure (see all but panel three of
Figure 2). For an equal-mass binary on a circular orbit, each
binary component has the same interaction with the disk, just
half of an orbit out of phase with the other. However, an
eccentric orbit breaks this symmetry by differentiating which
binary component interacts with the near (far) side of the disk
at apocenter (pericenter) or vice versa (see also Dunhill et al.
2015; Muifioz & Lai 2016). For example, at apocenter, one
binary component plunges into the disk’s near side while the
other stays far from the disk’s far side. After the disk precesses
by a one-half rotation, the situation is reversed. We run our
fiducial eccentricity-varying calculation for long enough to
smooth over these greater-than-orbital-timescale variations.

I/ [My/ M)

é/e [Moy/M]

Qq [107%Q]

0.0 0.2 0.4 0.6 0.8 1.0
(&

Figure 3. Top two panels: specific torque and power vs. e for each binary
component (red and blue), and the total (black). Trading between binary
components due to disk precession is well resolved over the eccentricity sweep.
Direct association of disk precession with these oscillations is shown in the
bottom panel, which plots the disk precession rate in units proportional to the
binary orbital frequency and highlights that disk precession halts for
02<e<04.

The bottom panel of Figure 3 plots the disk precession rate
Q, by computing the time derivative of the phase of the
domain-integrated complex quantity

Tout 2m .
f f 3(t, r, ¢)erdrdg. For e ~ 0.0 the disk precession

period s ~35027Q°"). This drops to ~30027Q° ") at
e~ 0.07 before rising to ~40027Q~") at e~ 0.1, coincident
with disappearance of the lump and the onset of regime (ii).
The rate remains steady over 0.1 <e <0.17 until a steep
doubling of the precession rate between e ~0.17-0.19, and a
halt in precession for 0.2 < e < 0.4 (with the exception of two
excursions at e = 0.291 and e = 0.345). Zero precession in this
regime is indicative of the origin-symmetry of the disk (third
panel of Figure 2), for which precession about the origin is not
possible. Cavity precession resumes for e¢>0.4 but at
approximately half the rate observed in regime (i), until rising
again for e 2 0.8, where the relative size of the gravitational
softening length causes results to become suspect.

Finally, notice that the constant eccentricity runs agree very
well with the continuous sweep, except for at e =0.1. Here,
density snapshots from the constant eccentricity run display
similarities to the origin-symmetric state, in disagreement with
Figure 2. To understand the origin of this discrepancy, we run
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Figure 4. The time evolution of ¢ and é during transitions to and from the origin-symmetric state and the asymmetric, precessing state. Log-surface-density snapshots
are taken at times indicated by the vertical gray lines. Top: for fixed binary eccentricity e = 0.4, starting from the quasi-steady state output of a e = 0.3 run. The disk
and binary response transition after ~700 binary orbits. Bottom: for a fixed binary eccentricity of e = 0.3, starting from the quasi-steady state output of a ¢ = 0.4 run.
The disk and binary response transition after ~1900 binary orbits. Smoothing is carried out over ~200 orbits to show oscillations due to disk precession.

another e = 0.1 run, but starting from steady-state, asymmetric
e = 0 initial conditions. The result of this run matches the result
of the sweep calculations. After ~3000 orbits, both e =0.1
runs hold steady in their respective states. So there is either an
inherent initial state memory in this eccentricity range, or the
transition time to the origin-symmetric state at e ~ (.1 takes
longer than a few thousand orbits. Why this is not an issue for
the e = 0.4 transition may be due to the shorter transition time
from the origin-symmetric to the asymmetric state discussed in
Section 3.2. For rapidly evolving systems, such direction-
dependent evolution may be physical.

3.2. Consequences for Binary Evolution

When the disk is much less massive than the binary, the
solutions for ¢ and ¢é provide all that is needed to determine the
long-term evolution of an equal-mass binary interacting with
our fiducial gas disk. The possible solution behaviors for a(f)
and e(f) can be greatly simplified by analyzing the shape of our
measured functions for ¢ and é.

The solution for é(e) has three zeros. Those at e =0 and
e~ 0.4 are attractors, and one at e 0.1 is a repulsive point
that acts as the divide between the e = 0 and e ~ 0.4 attractors.
Hence, the behavior of a(f) and e(f) near e =0 and e ~ 0.4 is
the most important to understand. The attractor at e = O attracts
binaries with ¢ < 0.1. Since d@(e = 0) > 0 in Figure 1, binaries
with e < 0.1 are destined to expand on circular orbits.

The other attractor at e~ 0.4, which we denote as e,
deserves further investigation. The same disk transition that
causes the change in sign of ¢ also causes a to change sign at
the same value of e =e,. At first glance this implies that all
binaries with e 2> 0.1 are destined to evolve toward orbits with
e = e, and an unchanging semimajor axis, or that fine tuning of
the exact value of the zeros of ¢ and ¢ would muddy

predictions for orbital evolution. However, the steep change in
binary response at e = e, is caused by the disk state change
discussed in Section 3.1, and this occurs over a finite transition
lag time.

This lag time is explored in Figure 4 where we use the output
of the constant eccentricity runs at e = 0.3 (origin-symmetric
state) and e =0.4 (asymmetric state) as the input for new
constant eccentricity calculations but now on the other side of
the transition eccentricity. That is, the output of the e=0.3
(e=0.4) run is the input for a new e¢=0.4 (¢=0.3) run.
Figure 4 shows that the transition does indeed occur in both
directions and with a lag time of ~700 binary orbits going from
the e = 0.3 initial conditions to the e = 0.4 steady state (origin-
symmetric to asymmetric), and ~1900 binary orbits going in
the opposite direction (asymmetric to origin-symmetric).

This lag between origin-symmetric and asymmetric, preces-
sing disk states will cause a continual overshooting across e,
resulting in an oscillation of the binary eccentricity. Because é
and a are asymmetric around e, this can cause a net drift of the
binary semimajor axis.

To determine the nature of the semimajor-axis drift, which a
binary on a nonfixed orbit would experience, we note that the
behavior of ¢ and ¢ around e, resembles a steep transition
connecting constant rates. Hence, we model the behavior
around the attractor e, as such, with the set of ordinary
differential equations,

a=a0lex — e(t — 1) + a,0O[e(t — 7)) — ex]
¢=¢0[ex —e(t — 7.)] + ¢0[e(t — 7)) —ex], (10)

where {q,, d,, ¢, é,} are the constant rates on either side of e,
and O is the unit step function. We include the finite transition
time between disk states with the introduction of 7,;, which is
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the transition time from origin-symmetric to asymmetric states,
7,, if € > 0 and the reverse, 7;, otherwise.

Before solving these equations, we find an analytical
solution for the average rate of change of the semimajor axis
(ax) by realizing that, within our simplified model, the behavior
of the binary semimajor axis near e, is simply an asymmetric
sawtooth in time characterized by the slope at which it rises a,,
the slope at which it decays d;, and the time spent in each
regime, which is set by the quantity & = |¢;/¢,], 7., and 7;.
Then at the transition eccentricity e, the average rate of
change of the binary orbital parameters is,

. _dl+dl‘£
(as) = B Iy )

which remarkably does not depend on the transition times
between origin-symmetric and asymmetric states, except that
both are nonzero. This arises because the change in a over one
oscillation cycle around e, and the total duration of a cycle
depend identically on the transition times 7,;. The delay times
do determine the average of the eccentricity oscilla-
tions, (¢) = ex + 0.5(¢;7 + é,7).
The condition for a decaying binary semimajor axis is,

(éx) =0, 1)

iz (12)

a, ér
Using approximate measured values from Figure 1, ¢ = 8,
e, = —2.5,4 = -5, and a, = 1, we find,

ay ~ —0.43a[My/M] (13)

for initial semimajor axis a. For Eddington accretion rates, a/d
corresponds to 2.33 Eddington times. The same result will arise
whether or not the binary first approaches e, from the left or
right. Figure 5 plots the solutions to Equation (10) for a(#), and
e(1), and their analytic averages, assuming
7, =1, =100027Q ") for simplicity.

4. Discussion

For thin, locally isothermal circumbinary disks around equal-
mass binaries, and for a fiducial set of disk parameters, we have
shown that the binary orbital evolution is driven to two
attracting solutions: (i) expanding circular orbits for initial
eccentricities eg < 0.1, and (ii) decaying orbits with orbital
eccentricity oscillating around e =< 0.4 for initial eccentricities
€02 0.1. Importantly, we have linked this behavior to a
transition in the disk response that results in an origin-
symmetric disk state for 0.2 < e < 0.4. Hence, the robustness of
these relatively simple results can be vetted by better under-
standing this disk transition.

Miranda et al. (2017) find a similar disk transition in their 2D
isothermal hydrodynamical calculations, which sample a few
different eccentricities and use the same fiducial disk
parameters but cut out the region of the domain containing
the binary (see also Thun et al. 2017). They attribute the
existence of precessing asymmetric and nonprecessing states to
eccentricity excitation at eccentric Linblad resonances
(Lubow 1991) competing with viscous damping. If this is the
case, then future analytical work can predict the change in
onset of the origin-symmetric state for different disk viscosity
and Mach number. For example, Tiede et al. (2020) and Heath
& Nixon (2020) show that the expansion of e =0, g = 1 binary
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Figure 5. Binary orbital evolution near the transition eccentricity ey, as
modeled by Equation (10). The black lines are the analytic average
expectations given by integrating Equation (11). We choose a density scaling
of Yoa®/M =107 to set the x-axis scale. Note that {¢) can differ from ey,
marked by the dashed gray line.

orbits can reverse for higher Mach number disks. Hence, the
robustness of our results should be understood in light of
resonant theory and numerical calculations like those presented
here, but for different disk Mach numbers and viscosities.

Further, we have identified the disk precession rate, which
encodes disk symmetry about the origin as a key diagnostic of
the disk and eccentric binary response. Future work should also
carry out a quantitative investigation of disk eccentricity in our
scenario, as studied in many previous works (e.g., Goodchild &
Ogilvie 2006; Mufioz & Lithwick 2020).

Our results are in good agreement with comparable studies
for g=1 binaries (using different codes). Our initial e =0,
q =1 calculation from which we start the eccentricity sweep
finds, in units of Mya®2, L ~ 0.8 after 500 orbits,® and
L ~ 0.7 after 5000 orbits, matching the range found in Miranda
etal. (2017; L R~ 0.8), Mufioz et al. (2019; L =~ 0.676), Moodx
et al. (2019; L =~ 0.723), (Tiede et al. 2020; L ~ 0.79),
and DD20 (L ~ 0.6) for the same disk and binary parameters.
Figure 1 shows agreement with the ¢ measurement of Zrake
et al. (2021) except for the steepness of the transitions that we
uniquely probe using a continuous eccentricity sweep. It also
shows that Mufioz et al. (2019), while not sampling between
e =0.2-0.4, do find a similar trend at high eccentricity, though
with offset values of é. While it is not clear what causes these
smaller differences at nonzero eccentricity, we note that the
main physical difference between this study and the other two
is the use of a constant viscosity (as opposed to an a-viscosity)

6 Corresponding to i/1 = 1.9-1.6[My/M].
7 Using a NG larger coefficient of kinematic viscosity.
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prescription, though this cannot explain the differences
between Zrake et al. (2021) and Muidoz et al. (2019).
Otherwise, the three codes employ different numerical
approaches that could be explicitly contrasted in future code
comparisons.

Another possibility for differences in calculated rates could
come from the treatment of accreted momentum and the sink
prescription. Dittmann & Ryan (2021) implement an improved
sink prescription following Dempsey et al. (2020), which
enforces a zero-torque boundary at the sink radius by
conserving the angular momentum about each point mass
when removing gas. This prevents artificial density depletion
near the sink and enforces zero “spin torque” (e.g., Muiioz et al.

2019) applied to the binary component. Comparison of runs
with and without this sink prescription provide an estimate for
the importance of such torques and dependence on the sink
prescription, which may also affect anisotropic accretion
forces. We tested a version of this momentum conserving sink
prescription (using shorter, 7y, = 500(27Q~") runs) and find
that it does not change our main results. It does introduce small
quantitative changes in @ and ¢ at the e ~ 0.2 and e ~ 0.4 disk
transitions, and becomes increasingly important for & at
e > 0.7. Future work will further explore this effect.

However, as DD20 shows, results vary greatly with mass
ratio; drastic changes in the disk and orbital response arise for
¢ <0.05, owing to a mass-ratio-induced disk transition
(D’Orazio et al. 2016). While future work should aim to
understand the disk response for different mass ratios, we note
that the long-term behavior of the binary will trend to equal-
mass binaries (DD20 ), and hence our results are relevant for a
wider range of initial binary mass ratios than just g = 1.

When the local disk is much less massive than the binary, a
and ¢ are functions only of e, and our treatment of the orbital
evolution in Equation (10) is valid. Rapid changes in ¢ and a
caused by a very massive disk could introduce dependence on
a, or induce binary apsidal precession that affects disk-binary
apsidal locking. Hence, behavior at this critical eccentricity,
modeled here with simplified evolution equations should be
investigated further in light of these possibilities, eventually
with a live binary.

We assume an infinite gas reservoir. Recent works show that
while finite disks never reach a formal steady state, they do
supply torques and mass accretion rates in agreement with
infinite disks (Mufioz et al. 2020; Tiede et al. 2020). Hence the
attracting solutions presented here will be relevant for a
sufficiently long-lasting disk supply. Otherwise, Figure 1
provides the interim solutions for binary orbital evolution
during the bulk of the disk lifetime.

The continuous range of binary eccentricities explored here
provide a unique data set for probing binary accretion rates as a
function of eccentricity, as was done for the binary mass ratio
(D’Orazio et al. 2013; Farris et al. 2014, DD20 ), and also for
measuring disk-induced binary apsidal precession rates, which
could have important dynamical consequences for accreting,
compact-object binaries. Both are the subject of forthcom-
ing work.

This disk transition may be important for the evolution of
misaligned, eccentric-binary+disk systems (e.g., Nixon et al.
2013; Aly et al. 2015; Moody et al. 2019), which could be
investigated in future 3D studies. There may be implications
for observed, misaligned stellar binary-disk systems (e.g.,
Jensen & Akeson 2014), the spins of the binary components
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(Gerosa et al. 2015), and the Kozai-Lidov mechanism for
accreting systems (e.g., Smallwood et al. 2021).

5. Conclusion

For a continuous range of eccentricities spanning to 0.9, we
have calculated the coupled evolution of binary semimajor axis
and eccentricity due to interaction with a thin, locally
isothermal circumbinary disk. We find that two attractor
solutions for binary eccentricity distill the long-term behavior
into two cases: (i) circular, expanding orbits, and (ii) binaries
with decaying semimajor axes with eccentricity oscillating
around a critical value near e =0.4. The nature of the latter
solution is set by a physical transition in the disk. Hence, this
work offers not only a simple prescription for long-term,
eccentric binary+disk evolution, but importantly offers a
physical description. This disk state change must be investi-
gated further to vet its robustness to a range of disk and binary
parameters and so further shape our progressing picture of disk-
induced binary orbital evolution.
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