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Abstract

A third order analytic approximation solution of Lyapunov tgl@iround the collinear equilibrium in the
planar restricted three-body problem by utilizing the Lindstedincaré method is presented. The
primaries are oblate bodies and sources of radiation presBoeetheory has been applied to the
binary a-Centuari system in six cases. Also, we have detetmmanmerically the positions of the
collinear equilibrium points and shown the effects of theameters concerned with these equilibripm

points.
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1 Introduction

The restricted three body problem (R3BP) is an instarfeerety two bodies (known as primaries) which
have significant masses as compared to a third body (kaeviime infinitesimal body) with negligible mass,
move in circular orbits about their common barycentred fhe motion of the third body is influenced by the
gravitational attraction of the primaries; whereas theionobf the primaries is not affected by the
gravitational field of the third boy. As such, this probleam @lso be viewed as a special case of the two
body problem (2BP).

Models for the R3BP can also be taken from the stelktersys [1,2]. Studies with applications to the binary
star systems enable scientists to determine the masstaf By the calculations of their orbits. This imntur
allows other astronomical parameters like size, teaiper, radius and density of the double stars to be
determined by astronomers.

So far, the R3BP has been shown to have only particulais®utOne of such is the five stationary or
equilibrium points (three of which lie on the line joining gr@maries called the collinear equilibrium points

and are denoted ak, , L, and L, while the other two which form triangular configurationthwthe

primaries and known as the triangular equilibrium poarts represented &gandLl; ). Another particular
solution is the periodic orbits around the equilibrium Eor around the primary bodies.

Apart from the classification of orbits in periodic soluticareaong several other uses, studies on periodic
orbits are valuable when it comes to station keeping and launchiagificial satellite. Over the years,
studies have been carried out on periodic orbits aroundahiébeium points in the R3BP, in-plane or
perpendicular to the plane of motion [3,4,5,6,7,8,9,10,11,12TH#&se investigations involved the use of
either analytical, numerical or a combination of bothhods. The analytical methods provide approximate
solutions or exact solution to the problem. From these sakitithe infinitesimal or starting orbits near the
equilibrium points are obtained. To continue to familiep@fiodic orbits around the collinear equilibrium
points or the triangular points or the primary bodieseaeshers make use of the numerical application
method known as the differential corrections scheme.

In order to examine some perturbing effects (radiation presBaynting-Robertson drag, solar wind drag,
Coriolis and centrifugal forces and angular velocity) andtwsier the non-spherical nature (oblateness and
triaxiallity) of the primaries, some researchers havdamaodifications to the classical R3BP in their studies
of periodic orbits around the equilibrium points (specificédir this study, the collinear equilibrium points).
Some of such works can be seen in [14,15,16,17,18,29,2Q,23,24,25].

Richardson [26] gave a third order analytical solution fdodtype periodic motion about the collinear

points of the R3BP by utilizing the method of successjygr@aimations in conjunction with a technique

similar to the Lindstedt-Poincaré method with applicatio Sun-Earth system. Also, by giving an analytical
approximation to periodic orbits in the circular restudcteree body problem (CR3BP), Nagel-Pichardo [27]
derived a simple set of analytical expressions that geviogic orbits on the disc of binary systems without
the need to solve the equations of motion by numerical mtiegt

In their work on periodic solutions in the CR3BP, Gao-£Zh§28] presented an analytical expression of
periodic solutions of the first-order approximate systétal-Kushvah [29] gave a third order analytic
approximation solution of halo and Lissajous orbits when they dered the effect of radiation pressure,
Poynting-Robertson drag and solar wind drag on the Sun-(EartmMR3BP.

In this study we give a third order analytic approximation of periodicusoh around the collinear
equilibrium points in the planar circular restrictedethibody problem (PCR3BP) by utilizing the Lindstedt-
Poincaré method. From the approximate periodic soluthmnjnitial conditions or starting orbits near the
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collinear points have been obtained. The theory is apptiethe binarya-Centuari system, whera-
Centuari A is the primary araCentuari B is the secondary. The infinitesimal body isrdto be a possikt
exoplanetwith negligible mass as compared to the masses of thergrgmaoving in the pldane of motion
the binary system. The assumptions made here are thattaatthave significant radiaticon effectd are
sufficiently oblate in shape. Arbitrary chosenues for the radiation and oblateness coefficieatsebeer
drawn in six instances (cases). In the first case, thasystem is considered with respiect tocthssical
problem (spherical nature of the primaries) while the ofthver cases have valudor all the parameter
concerned.

In the second section of this study, we give the equatddmotion of the problem and smow the regiof
possible motion of the infinitesimal body. In the next sectiem numerically determine thhe positiohthe
collinear equilibrium points and show the effects of the raahapressure and oblateneess paramete
these points. In sect. 4, we give the third order Lind-Poincaré local analysis of Lyapunov orbits aro
the collinear equilibrium points, and pret the numerical results in sect. 5, while we give tonclusions il
the last section.

2 Equations of M otion

Let m ,m, and m be the masses of the primary, secondary and infimegsodies (that ita-Centuari A,

a-Centuari B and an exoplanet), respectively. Here, the pyilmadies are moving in circcular orbits @t
their common barycentre, while the infinitesimal body is ing and exerting no influence in the plane

_m

+m
the distance between the primaries, such that the gram#htconstarG =1. The unit of mass has be
chosen so tham + m, =1 and we takim, =1— 4 andm, = 4. We letOXybe the synod coordinate

motion of the primaries. The magarameter is given | 1/ = . Let the unit of distance be taken

system with the position of the infinitesimal body P(X, y) and the primary and secondary bodies
P (u,0) and P,(—(1- 1), 0) respectively. Thus, the equations of motion of the infiitinal body in the
dimensionless synodic coordinate system with radiatiorspreparameteig, and d,(q <1,i=1, 2) and

oblateness paramete/s and 4. [30] are

X-2ny=Q,,
y+2nx=Q,, W)
with
2 — —
a=""(+ y2)+(1 M), 1 (L ﬂ)3Aq+uA2302,
2 n r x; 2,
where

r, = (x— p+17 +y?,

and n is the mean motion, given as
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n= LA+ A).

The Jacobi integral which is obtained from eq.i¢lgiven by
X*+y*=2Q-C,

where the symboC denotes the Jacobi Constant.
Y
y T m

)
&1

m
wt 1

m;

Fig. 1. The configuration of the rotating coordinate system for therestricted three-body problem
where m,, M,and m arethe oblate primaries and infinitesimal body respectively

The Jacobian integral is used to obtain the Zeftoeity surface plots by assuming that the velocity
variables are equal to zero. This surface divitlesspace into two regions. One of the regions @knas
the region of possible motion while the other iBechthe forbidden region. These regions descltigearea
where the infinitesimal body is allowed and wheris inot allowed. In Fig. 3 there are three didticerves
which represent the Zero-velocity curves for theolb& Constant when the first, second and thirdiroedir
equilibrium points are considered with respectht® present model. Within these curves are the dddyi
regions of motion for the infinitesimal body.

The actual masses of the star€entuari A andx-Centuari B are2.192x 16°Kg and1.970x 16°Kg

respectively. Then, the mass paramgter %): 0.4733< —;

4.162
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Fig. 2. Theforbidden region of the infinitessmal body with respect to the Jacobian constant C and the
collinear equilibrium points

3 Determination of the Collinear Equilibrium Points

The positions of the collinear equilibrium point® abtained from the solution of the nonlinear btg&
equatiorQ), =0, wheny =0 by solving forx. That is, we solve

QA=) _HR(x+1-p) SAQ M) HAMCEL)G o (y

nx- 3 3 5 5
o xd i 2xeis

The solutions of eq. (2) have been found to exishiw the intervals(—co, =1+ ), (—1+ 4, u) and
(u,+00) . By solving eq. (2) numerically, each of thes@imals contain a real root which correspond_fo,

, L,and L, respectively. In Table 1, we have shown six casestlaeir corresponding collinear equilibrium
points for all the participating parameters. Thestficase corresponds to the classical case where
A = A =0andqg, = g, =1. The other five cases have values as shown inathie. The effect of the
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oblateness and radiation pressure of the bina@entuari system on the collinear equilibrium psihaive
also been shown in Figs. 3 and 4 respectively.

Table 1. Callinear Equilibrium pointsfor binary a-Centuari system mass parameter (¢ =0.47333)

Case A A, a, a, L, L, L,

1 0 0 1 1 -1.2075148 -0.0376599 1.1890215
2 0.01 0.001 0.4 0.1 -0.79423688 -0.16548350 0.3883
3 0.02 0.002 0.5 0.2 -0.88238502 -0.13509348 1.93712
4 0.0¢ 0.00¢: 0.€ 0.3 -0.9452071 -0.1204779 1.0565168
5 0.04 0.004 0.7 0.4 -0.99536901 -0.11247880 10063
6 0.0t 0.00¢ 0.8 0.5 -1.0376116 -0.1079017 1.1319842

(b)
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©

Fig. 3. The oblateness effects of the binary a-Centuari A system on the collinear equilibrium points L,
in (@), L, in(b)and L,in (c), for case 2
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©
Fig. 4. Theradiation effects of the binary a-Centuari A system on the collinear equilibrium points L,

in (@), L, in(b)and L;in (c), for case 2

4 Motion Around the Collinear Equilibrium Points

In order to investigate the motions around theimedlr equilibrium points, we obtain a new coordinat
system that takes any bf, i =1,2,Z (the collinear equilibrium points) as the origifttwthe axes agp

and ¢paral|e| toOx and Oy respectively. Thus, by setting

X - X% +gandy - @, 3)
the equations of motion in egs. (1) become

p-2np=Q,,

) : 4

P+2np=Q,.

Next, the R.H.S. of egs. (4) is expanded up taltbirder terms using the Taylor series expansionvesd
obtain

Q,=hg+h g +hg +h $*+hpp*
Q=R+ R @R PP+R P,

where

=+ 2%(1—#)[% +$] . 2%#[—%%} ,

10 10 Mo T2
5 1 5 1
hz :_3(1_,“)“1(:'1{_’21 _4}11+ 3¥JQ2|:_':‘2+_4}U27
o T Mo T o
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" :3(1—2u)q _ﬂ+i4}}1+ 3!1202[5_§+ J;}Uz,

L r.10 r.10 r.20 r 20

e =20 1) @%} 2/1(1{15?2 +35j ,

o o Moo I3
(2 ol :2)
= -(Q1- u)q[z/j% r—?{)j—ﬂ%(z—? rz)
i, =3(1—u)q1E—'E +r—ﬂul— &JQ2_Z_A§0+|,_Z:U2’
b= 2042 [ 282
714:3(1—,u)qlﬁ'2+2—m} &IQZ[Z'Z Z_SJ

In order to avoid absolute values for each casesyimbol®), and U, are being used to represent the signs

of 1, =X, — 4| andr,, =[x, +1- /| at any of the collinear equilibrium points.
We search for periodic solutions represented irfdhlewing equations in powers of a parameger

ur) = (e +@(0)e” +@n)e’,

®)
#(1) = ()€ + §,(1)€” + (1) €7,
and time is expanded by the expression,
t=«kr, Kk =1+ p,£°. (6)

The symbol 0, has been chosen such that any secular term isneliedl in the course of the computations.
Eqgns. (4) can now be written as

@-2nkg = K°Q

) S (7
@ +2nkp=kKQ
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Putting egs. (5) into (7) and equating the coeffits of“:,(‘:2 ande®, we get first order, second order and
third order systems respectively, which can beesbbuccessively.

4.1 The First order system

The equations obtained for the first order termg iare

d-2ng' -n,¢ =0, @
' +2ng —R,¢ = 0.
Defining a differential operator
o +h, *2w
r(o= ! :a)4+(hl+7ll—4n2)a)2+hl7(,1:O. 9)
+2nw W +E,

System (8) can also be written as

@) (0
() (¢J = (0] (10)

The periodic solution for system (10) is given by
@ =wCoqwr) +J Sifwr),
¢, =@ Coqwr)+J Sifwr),

, - L 2ir
and the period of the periodic orbit is given by=— . We settw =1and 4 = 0 so that,
w

-2nw

@’ =0 and 9"=—""_.
r,+ @

Thus, the periodic solution of system (10) become

@(r) =Coqwr),

11
¢,(r) =9, Sin(wr), (12)
where
90 = _Aio_wzl
! 2nw

10



Singh and Gyegwe; BIMCS, 22(1): 1-18, 2017; ArtideBIMCS.33168

4.2 Second order system

This is given by

@\ _(0.(1)
F(D)[ctzj'{m mj’ a2
where
0,() =h4 14", 13
0,(7) = %,

We substitute egs. (11) into (12), then eq. (18pbee

0,(7) =w, +wCoq2wr),
0,(7) =8, Sin2wr),

where

@ = —h,+ h3(z915)2
° 2, ’

o = (R 40P )+ G [AR w+h P (R, + 4]
! 2h K, +8(h,+ X, 40° Yo + 3*

. _dhnw=3, [hk ,+4w(h N9, + K w)]
2 2nR,+8(h,+ K, — 40 + 3¢

Thus, the periodic solution of system (12) is

@ (1) =w, +Coqwr) +w, Cog2wr),

a © (14)
@,(1) =9, Sifwr) +3, Sif2wr).
4.3 Third order system
In this aspect, we have
O
r(m)(@j{ 3(”}' .
¢3 D 4(T)

11
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where

O4(1)=2np,0,+2h p P ,+ 2 p p,+ 1 ¢2{p1+h €f1+ 2 9@,
0,0 =-2np, @+ i+ pp+ 20 pp X Fp 1 9¢

— (qJ1+a)(qJ2_LP3))
= v ,

and o,

4
W =-n, R~ o+ g+ R P+ R )
W, =2n(Jng+ 4 o, + S o+ h 97+ 4 §F,),
W= (K= 2R o+ R+ PV )R P 1
W, =81,k I, —nw)+df (R 7, + n(-2n9, +w)))).
So, working as previously, the periodic solutiorsg$tem (15) is obtained as
@ (1) =w,Coqwr) +w,Cog3wr),
¢,(1) =8, Sin(3wr),
where

+
. = 9210, ezz,with

2
23

O, =(3ns+ 4, (@, + 270)"'19; @ 1-9*1"' 4 §*2 NE 7?1+nw)1
922 :_(7”3191* +37-‘419$* + 21 2(_wi9*1+ 2369*1"'7-9*2))(7% 1+n7-9 P))a
O, = 2(=4nw (i, + NS, W)+ 2( I, + W) + & )),

and

0,,+0
@, =-—32—32 having

33
3 . " L
@31=%(7L3‘91 —Kﬁf +2R (W¢, +7,))w,

O = =4 s + 40 2,-9, (1.9, + 40 9 )0 1+ %5 ),
0, =36n°aF — (1, + W’ )0, + W),

12
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and

193* :_<D1+CDZ+CD3’
cD4

o, = hl(xa‘lgf -% 47'9? + 2K 2(@19*1 +z9*2),

o, :_Gn(h5+4hzlvl_791* (@ }91 +4n §*2 )W,

q)3 = g(x?,ﬂ; _x 479]?* + 2x 2(wf9tl. +l9*2 ))(‘3 ’

®, =4(h A, + 9, + 1k, — 40 ) + 8L
Therefore, the third order approximation of pertodblution under oblate binary -Centuari A system
around the collinear equibrium points as a functibparametels is being obtained as

¢7) =[codwr)] e+ @, + @, coR wr)] £* H @, cqgv) +@, CBwr)] £

#(1) =[J sinf(wr)] e+ I, sif2wr)] &€ H I, siBwr)] £,

A1) = —wsin(wr )& — 2w, sin(2ur ¥° - o, sinfr ¥ &, sin@r ¥ ,

P(1) = W cosr ¥+ 29, cos(@r)e” +3wd, cos(Iur ¥° .

(16)

0.10
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0.00 0.0¢
[10.05 |
[ 0.05
[0.1C F
[10.06D.050.040.03.020.01 0.16/ 10.15/ 0.14( 0.13( 10.12( 10.11
(@ (b)

13
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Fig. 5. In (a), (b), (c), (d), (e) and (f) [which also correspond to figuresfor cases 1,2,3,4,5 and 6] we
show the starting orbitswherein each frame, the orbitsin colour blue, green and red correspond to
the first, second and third order systemsrespectively

14
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5 Numerical Results

In the analysis presented above, we have obtainkudaorder approximation of periodic solution kwithe
aid of the Lindsted-Poincaré method around theirmdr equilibrium points by taking the primaries as

oblate and radiating bodies in the restricted thredy problem. The mass paramejgr=0.4733%is
obtained from the binarg-Centuari system. As such, the initial conditic(n%, Yos T) as shown in Tables
2, 3 and 4 have been obtained by substituting #te presented in Table 1 in egs. (16) for smalleslof
the orbital parameteg in all the cases (1 to 6) at= 0. Also, in Tables 2, 3 and 4, the fifth column and
sixth column give the Jacobi Constant and the jvesimaginary root(+cd) to the characteristic equation
of system (9), respectively.

In Fig. 4, we show in (a), (b), (c), (d), (e) affid[which also correspond to figures for cases£3and 6],
the starting orbits where in each frame, the orbitsolour blue, green and red correspond to tlst, f
second and third order systems respectively. ltbeaseen that these starting orbits are all ovsehape [14].

Table 2. Theinitial conditionsfor the Lyapunov orbitsaround the collinear equilibrium point L, for

binary a-Centuari system mass parameter (/= 0.4733:

Coe % Yo T C @

1 -1.1777229 -0.1584439 5.2699651 3.4751846 1.1927430
2 -0.76451797 -0.13404904 3.32511205 1.33092657 903868
3 -0.8529699 -0.1412833 3.7643452 1.7313562 1.6698028
4 -0.91603690 -0.15064417 4.03701109 2.07085351 570180
5 -0.96642262 -0.16040252 4.23423349 2.37809889 8449874
6 -1.0088838 -0.1701898 4.3869836 2.6645400 1.4328100

Table3. Theinitial conditionsfor the Lyapunov orbitsaround the collinear equilibrium point L,for

binary a-Centuari syssem mass parameter (/ =0.4733:

Coe % Yo T c @

1 -0.00786810 -0.50240508 1.66199403 3.99865977 8283180
2 -0.13576459 -0.09924098 4.49137120 0.95857994 99h(B97
3 -0.10567840 -0.17260044 3.08133233 1.39453273 3923890
4 -0.0913077 -0.2446957 2.4853402 1.8303620 2.5291161
5 -0.08353241 -0.31972218 2.12428715 2.27039126 582880
6 -0.07917390 -0.39856305 1.87327991 2.71609925 5535018

Table4. Theinitial conditionsfor the Lyapunov orbits around the collinear equilibrium point L, for

binary a-Centuari system mass parameter (1 =0.4733:

cox X% Yo T ¢ @

1 1.21881344 -0.14860729 5.61879746 3.43731738 8haA3B7
2 0.9880584 -0.1082714 4.1167633 1.8845125 1.5268582
3 1.04064080 -0.12551658 4.23720387 2.19245704 345807
4 1.08568711 -0.14022498 4.33697474 2.48247540 93364
5 1.12528648 -0.15369264 4.41909062 2.75927019 239895
6 1.16071210 -0.16640484 4.48676943 3.02584346 094485

15
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6 Conclusions

In this study, we have obtained a third order amappproximation of Lyapunov orbits around theliogar
equilibrium points in the R3BP by using the Lindkt®oincaré method. We modelled the primaries é th
binary a-Centuari system where the primary bodwyii€entuari A and the secondary bodyi€entuari B.
The infinitesimal body is taken to be a possible@anet moving in the plane of motion of the binary
system.

Also, we numerically determined the positions @& tollinear equilibrium points and showed the effeaf
the parameters concerned on these points. It caediethat with each increase in the radiationspresand

oblateness parameters, the first collinear ptiptmoves away from the origin and closer to the pmsiof
that of the classical case and also closer togherglary body, while the second collinear equilitripoint
(inner collinear point)L, moves toward the origin and closer to that ofdlassical case. The third collinear

equilibrium point L, moves further away from the primary body and apphes the classical case.

The initial conditions or starting orbits obtaingdall the cases are shown in both tabular andhicap
forms in Tables 2, 3 and 4 and Figs. 4 respectivighg orbits are oval in shape. These results earsbd to
continue to families of periodic orbits and cancbhenbined with those of the spatial orbits as well.
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