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Abstract 
 

In this article we studied blood flow through an indented artery and assumed blood to be Jeffrey fluid. 
The study investigates the influence of heat transfer on the flow profile of Jeffrey fluid in an indented 
artery. Also, the formulated governing equations are transformed into coupled Bessel differential equation 
and solved analytically. The effects of various physical parameters such as Prandtl number of blood,

21Pr  ,Grashof number, Gr ,Darcy number, Da ,Hartmann number M, Reynold number, Re ,as well 

as the Jeffrey parameter, 1 and a constant parameter,  on the velocity profile and temperature profile. 

The results are discussed in detail with the graphs obtained using Mathematica version 10.3. 
 

 
Keywords: Oscillation; MHD; heat transfer; Darcy number; Jeffrey fluid; artery. 
 
 

Original Research Article 



 
 
 

Bunonyo et al.; ARJOM, 7(4): 1-13, 2017; Article no.ARJOM.37604 
 
 
 

2 
 
 

NOMENCLATURES 
 

 , ,u v w  
 
: Dimensional velocity components 

z :  Dimensional axisymetric direction of the flow 

r :  Dimensional radius of the artery 

t :  Dimensional time 

wT :  Dimensional wall temperature 

T  :  Dimensional Fluid Temperature 

T :  Fluid temperature at the stent region 

M :  Hartmann number 
K:  Porosity 

Pr :  Prandtl number 

Gr :  Grashoff number 

pC :  Specific heat capacity of the fluid at constant pressure 

rq :  Radiative heat flux 

Da :  Darcy number 

( )R z :  Radius of the indented region of the artery 

0R :  Radius of the normal artery 

0L :  Length of the artery under investigation 

:a     

0

R
a

R
   

 1 :    Ratio of relaxation to retardation time 

 2 :   Retardation time   

d :  Distance of the onset of stenosis 

k :  Thermal conductivity 

0 ( )w r :  Dimensionless velocity  

( , )w r t : Velocity profile of the fluid 
 

GREEK SYMBOLS 
 

 :  Kinematic viscosity 
 :  Dynamic viscosity of the fluid 

g :  Acceleration due to gravity 

 :  Density of the fluid 

c :  Electrical conductivity 

 :  Frequency parameter  

 T :  Coefficient of volume expansion due to temperature 

,  :  Modified radiation parameters  

0P :  Oscillatory pressure 

0 :  Dimensionless temperature 

( , )r t :  Temperature profile  
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1 Introduction 
 
Numerous cardiovascular sicknesses, especially atherosclerosis (therapeutically called stenosis), observed to 
be responsible for deaths in developed and developing countries, are closely related to the nature of blood 
movement and the dynamic behaviour of blood vessels, are firmly identified with the idea of blood 
development and the dynamic conduct of vessels. Stenosis implies the anomalous and unnatural 
development in the lumen of an artery that creates at different areas in the cardiovascular framework under 
horrible conditions. 
 
From medical surveys, it is well known that more than 80% of the total deaths are due to the diseases of 
blood vessel walls [1]. Among them, stenosis is a dangerous disease that is caused due to deposition of 
cholesterol and some other substances on the endothelium and by the proliferation of connective tissues in 
the arterial wall. The reason for the formation of stenosis in the lumen of an artery is not known but its effect 
over the flow characteristics has been studied by many researchers. But deposition of various substances 
such as cholesterol and other fatty materials called plaque on the endothelium of the arterial wall and 
proliferation of connective tissues are believed to be the factors that accelerate the formation of stenosis [2]. 
Cardiovascular diseases such as stroke, heart attack, heart failure are associated with some form of an 
abnormal flow of blood in stenotic arteries [3]. Heat transfer effect on laminar flow between parallel plates 
under the action of transverse magnetic field was studied by Nigam and Singh [4]. Soundalgekar and Bhat 
[5] have investigated the approximate analysis of an oscillatory MHD channel flow and heat transfer under 
transverse magnetic field. The transient and steady velocity, the transient and steady magnetic field was 
shown graphically. MHD flow of viscous fluid between two parallel plates with heat transfer was discussed 
by Attia, and Kotb [6]. Raptis et al. [7] have analyzed the hydromagnetic free convection flow through a 
porous medium between two parallel plates. Aldoss et al. [8] have studied mixed convection flow from a 
vertical plate embedded in a porous medium in the presence of a magnetic field. Makinde and Mhone [9] 
have considered heat transfer to MHD oscillatory flow in a channel filled with porous medium. Mostafa [10] 
have studied thermal radiation effect on unsteady MHD free convection flow past a vertical plate with 
temperature dependent viscosity. Unsteady heat transfer to MHD oscillatory flow through a porous medium 
under slip condition was investigated by Hamza et al. [11]. 
 
Moreover, the non-Newtonian fluids are more appropriate than Newtonian fluids in many practical 
applications. 
 
Examples of such fluids include certain oils, lubricants, mud, shampoo, ketchup, blood, cosmetic products, 
polymers and many others. Unlike the viscous fluids, all the non-Newtonian fluids (in terms of their diverse 
characteristics) cannot be described by a single constitutive relationship. Hence, several models of non- 
Newtonian fluids are proposed in the literature. Al Khatib and Wilson [12] have studied the Poiseuille flow 
of a yield stress fluid in a channel. Flow of a visco-plastic fluid in a channel of slowly varying width was 
studied by Frigaard and Ryan [13]. Ali and Asghar [14] have analyzed by oscillatory channel flow for non- 
Newtonian fluid. Choudhury and Das [15] have studied the effect of heat transfer on MHD oscillatory 
viscoelastic fluid flow in a channel through a porous medium. [16] investigated an axisymmetric blood flow 
through an axially non-symmetreic but radially symmetric mild stenosis tapered artery. To estimate the 
effect of the stenosis shape, a suitable geometry has been considered such that the axial shape of the stenosis 
can be changed easily just by varying a parameter. The model is also used to study the effect of the taper 
angle ϕ. Akbar et al. [17] studied a non-Newtonian fluid model for blood flow through a tapered artery with 
a stenosis by assuming blood as Jeffrey fluid. The main purpose of our study was to study Jeffrey fluid 
model for blood flow through a tapered artery with a stenosis, Jeffrey fluid model is a non-Newtonian fluid 
model in which we consider convective derivative instead of time derivative. It is capable of describing the 
phenomena of relaxation and retardation time. The Jeffrey fluid has two parameters, the relaxation time λ1 
and retardation time λ2. Perturbation method is used to solve the resulting equations. The effects of non-
Newtonian nature of blood on velocity profile, wall shear stress, shearing stress at the stenosis throat, and 
impedance of the artery are discussed. 
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In view of these we studied the effect of heat transfer on MHD oscillatory flow of a Jeffrey fluid (blood) in 
an indented artery. The expressions are obtained for velocity and temperature analytically. The effects of 
various emerging parameters on the velocity and temperature are discussed graphically in detail. 
 

2 Mathematical Formulation 
 
We consider MHD oscillatory flow of Jeffrey fluid in an indented artery of radius 0R . A uniform magnetic 

field 0B being applied in the transverse direction to the flow. The wall of the artery is maintained at a 

temperature wT . We also consider the cylindrical coordinates ( , , zr  ) in such as way that 0r   is the axis 

of symmetry. The flow is considered as axiallialy symmetric and fully developed. The schematic of the flow 
is shown in figure below. 
 

 
 

The equation of  S  for Jeffrey fluid is   
 

2

1

( )
1

S


  


 


                   (2.1) 

 

where   is the dynamic viscosity, 1  is the ratio of relaxation to retardation times, 2  is the retardation time,

  is differentiation of the shear rate with time. 

 
The governing equations of the flow are given by 
 

  2
0

1
( )c T

w p
rS B w T T gk w

t z r r


   

   
         

      


            (2.2) 

 
2

2

1T

p

kT T T

t C r r r

     
        

                (2.3) 

 

where   is the fluid density,   is the fluid viscosity, p  is the pressure, w  is the velocity component in z

direction, K  is the permeability of the porous medium, g  is the acceleration due to gravity, c  is the 
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electrical conductivity of the fluid, T  is the coefficient of thermal expansion, T  is the temperature, Tk  is 

the thermal conductivity and pC  is the specific heat at constant pressure. 

 
The appropriate boundary conditions are 
 

00 ,   at (z)

0,   at (z)

ww T T r R

w T T r R

    

    
                (2.4) 

 
We shall now introduce the following non-dimensional quantities  
 

 

0

0 0 0 0 0

3
0 0

0 02
0 0

*
* , z* , , * , * , , ,

, , , ,

w

w

p T c
w

T e

p p RT Tr z w t v
r w t P

R R T T w R w

C g R vRK
Pr Gr T T Da M B R Re

k w R

 


   

  







     
         


     



             (2.5) 

 
Substitute the equation (2.5) into (2.2) and (2.3), we get dropping the asterisk  
 

2
2

2
1

1 1 1

1

w p w w
Re M w Gr

t z r r r Da
 



      
         

       
            (2.6) 

 
2

2

1
PrRe

t r r r

     
  

   
                (2.7) 

 

The corresponding non-dimensional boundary conditions are  
 

0 ,  1 at 1

0,  0 at 

w r

w r a





  

  
                 (2.8) 

 

3 Methods of Solution 
 
Since the flow of blood through an artery is largely dependent on the pumping action of the heart and it 
gives rise to an oscillatory pressure gradient on the left ventricle which can be represented as 
 

0

* i tp
P e

x


 


                 (2.9) 

 
and define the velocity and temperature profiles as  
 

  0, ( ) i tw r t w r e                 (2.10) 

 

  0, ( ) i tr t r e                  (2.11) 

where 0P  is constant pressure,   is the angular frequency of the oscillation. Substituting the above 

expression in Equations (2.9), (2.10) and (2.11) into equations (2.6) and (2.7), we obtain: 
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     
2

20 0
1 0 1 0 1 02

1 1
1 1 1

w w
M Rei w Gr P

r r r Da
     

    
            

    
        (2.12) 

 
2

0 0
02

1
0PrRei

r r r

 


 
  

 
              (2.13) 

 

Let  2 2
1

1
1 M Rei

Da
  

 
    

 
,

2 PrRei  ,  1 11 Gr    and   2 11     so that  

 
2

20 0
0 1 0 2 02

1w w
w P

r r r
   

 
    

 
           (2.13a) 

 
2

20 0
02

1
0

r r r

 
 

 
  

 
            (2.13b) 

 
And the corresponding boundary conditions are: 
 

0 0 00, 0, , 1, 1w r a r                   (2.13c) 

 
Equations (2.13a) and (2.13b) are coupled non-linear differential equations and are solved analytically with 
the appropriate boundary condition in equation (2.13c) as 

 

0 51 0 52 0( ) ( ) ( )r A I r A K r           (2.14) 

 

0
51

0 0 0 0

( a)

( ) ( a) ( ) ( a)

K
A

I K K I



   



, 0

52

0 0 0 0

( a)

( ) ( a) ( ) ( a)

I
A

I K K I



   



 (2.15) 

 
Substituting equation (2.15) into equation (2.14), it can be rewritten as  
 

0 0
0 0 0

0 0 0 0 0 0 0 0

( a) ( a)
( ) ( ) ( )

( ) ( a) ( ) ( a) ( ) ( a) ( ) ( a)

K I
r I r K r

I K K I I K K I

 
  

       
 

 
 (2.16) 

 
Substitute equation (2.16) into the momentum equation in (2.13a), so that we can write the aforementioned 
equation as 
 

 
2

20 0
0 2 0 1 02

1w w
w P

r r r
   

 
    

 
            (2.17) 

 
Solving equation (2.17) analytically using the appropriate boundary condition in equation (2.13c), we shall 
have the following solution in dimensionless form: 
 

 2 0 1
0 53 0 54 0 51 0 52 02 2
( ) ( ) ( ) ( ) ( )

P Gr
w r A I r A K r A I r A K r

 
   

 
             (2.18) 
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2 0 1
0 53 0 54 0 2 2
(1) ( ) ( ) ( ) 0

P Gr
w A I A K H

 
  

 
              (2.19) 

 

2 0 1
0 53 0 54 0 2 2
( ) ( ) ( ) ( ) 0

P Gr
w a A I a A K a H a

 
  

 
              (2.20) 

 

where   1 0 2 0( ) ( ) ( )H A I A K      

 

 53 0 54 0 2 0 12

1
( ) ( ) ( )A I A K P GrH    


               (2.21) 

 

 53 0 54 0 2 0 12

1
( ) ( ) ( )A I a A K a P GrH a    


               (2.22) 

 
Our velocity profile is obtained as: 
 

2 0 1
53 0 54 0 02 2

( ) ( ) ( ) i tP Gr
w r A I r A K r e  

  
 

 
    
 

          (2.23) 

 
where  
 

   2 0 1 2 0 1
53 0 02

0 0 0 0 0 0 0 0

( ) ( )1
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

P GrH a P GrH
A K K a

I K a I a K I K a I a K

     
 

        

  
  

     

   (2.24) 

 

   2 0 1 2 0 1
54 0 02

0 0 0 0 0 0 0 0

( ) ( )1
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

P GrH P GrH a
A I a I

I K a I a K I K a I a K

     
 

        

  
  

  
  (2.25) 

 
and the temperature profile as: 
 

0
0

0 0 0 0

0
0

0 0 0 0

( a)
( )

( ) ( a) ( ) ( a)
( )

( a)
( )

( ) ( a) ( ) ( a)

i t

K
I r

I K K I
r e

I
K r

I K K I






   





   

 
  

  
 
  

           (2.26) 

 

4 Discussion of the Results 
 
In this section, the numerical and computational results are discussed for the problem of an incompressible 
non-Newtonian Jeffrey fluid through indented arterial channel in detail with graphical illustrations. The 
numerical evaluations of the analytical results and some important results are displayed graphically in      
Figs. 1 to 10.  MATHEMATICA is used to obtain the numerical results and illustrations. The analytical 
solution of the momentum equation is obtained by Frobenius method. All the obtained solutions are 
discussed graphically under the variations of various important parameters in the present section. 
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Fig. 1. Velocity Profile ( , )w r t  against r  with variation of Re  , leaving 0.3, 0.5, 0.1,a Gr    

0.05,Da  0.5, 21,Pr   M 0.5 , 1 0.2   .We observed that the velocity decreases as Re
increases  

 

 
 

Fig. 2. Velocity Profile ( , )w r t  against  r  with variation of , leaving 0.3, 0.1, Pr 21,a Gr    

0.05Da  0.2,  M 0.5, 0.3, 0.7t Re   , 1 0.2    We observed that the velocity increases 

as the relaxation    increases 

 
  

Fig. 3. Velocity Profile ( , )w r t  against  r  with variation of a , leaving 0.5, 0.1,Gr    0.05Da 

0.2,  M 0.5, 0.3, 0.1t Re   , Pr 21,  1 0.2   constant. It is observed that the velocity 

decreases as the stenotic region a  increases 
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Fig. 4. Velocity Profile ( , )w r t  against  r  with variation of Gr , leaving 0.3, 0.3,a    0.05Da 

0.2,  M 0.5, 0.3, 0.5t Re   , Pr 21,  1 0.2   constant. It is observed that the velocity 

increases as the Grasof number, Gr  increases 
 

 
 

Fig. 5. Velocity Profile ( , )w r t  against  r  with variation of Da , 0.3, 0.5, 0.7,a Gr    

0.5Re  0.02, 21,Pr   M 2,  1 0.2   constant. We observed that the velocity increases as 

Da  number increases 

 
 

Fig. 6. Velocity Profile ( , )w r t  against  r  with variation of M , leaving 0.3, 0.5,a    0.05,Da 

0.05, 21,Pr   0.5Re  0.7,Gr   1 0.2   constant. It is observed that the velocity increases 

as the magnetic field M  decreases 
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Fig. 7. Velocity Profile ( , )w r t  against  r  with variation of 1 , leaving 0.1Gr  0.3,a   0.7,Re   

0.05Da  , 0.5M  0.5  0.02,   21Pr   3t  , remain constant. We observed that the 

velocity profile increases as 1 increases 

 

 
 

Fig. 8. Velocity Profile ( , )w r t  against  r  with variation of t , leaving 0.3,a  0.2,Re   0.01,   

1 0.2, 0.5, 0.1, 0.05Gr Da      21Pr   remain constant. It is observed that the 

temperature profile ( , )w r t  does not change as t  increases 
 

 
 

Fig.  9. Temperature Profile ( , )r t  against  r  with variation of leaving 0.3,a  21Pr   0.2, 

0.5t   remain constant. It is observed that the temperature profile ( , )r t  decreases as Re  

increases 
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Fig. 10. Temperature Profile ( , )r t  against  r  with variation of leaving 0.3,a  0.2,Re   21Pr 

0.5t   remain constant. It is observed that the temperature profile ( , )r t  decreases as   increases 

 
 

Fig. 11. Temperature Profile ( , )r t  against  r  with variation of leaving 21Pr  0.2,Re   

0.2,  0.5t   remain constant. It is observed that the temperature profile ( , )r t  increases as a  

increases 
 
The effect of various parameters on the flow profile and temperature profile were discussed through Fig. 1 – 

Fig. 10. In Fig. 1 it is observed that the velocity profile is been affected by the increase in Re by the 
decreasing the velocity. It also shows a parabolic shape an attained a maximum velocity at the centre.  From 

Fig. 2 it is noticed that the velocity is caused to increase for increasing constant parameter . In Fig. 4 we 

can observe that the increase in Grashof number Gr caused an increase in the velocity which means it is 
good control of blood pressure in cardiovascular challenges. Similarly, in Fig. 3 it is observed that as the 

velocity of the flow is increasing as the geometry of the stenosis, 

0

R
a

R
  is increasing, which means from 

the treatment perspective it is a welcome development. Because 0R R�  and the height of the stenosis 

1 �  maintaining the other parameters values. It is observed from Fig. 5, that the velocity profile increases 
as the Darcy number increases. As a matter of fact that would keep the hemoglobin in microcirculation to 
keep lives in check. From Fig. 6, it is observed that the velocity profile is caused to increase by reducing the 
amount of magnetic intensity. The velocity profiles are parabolic in nature, in which it attains it maximum at 
the interface.  Fig. 7 is showed to study the effect of Jeffrey parameter on the flow pattern. It is observed that 

the velocity increases with increasing Jeffrey parameter 1 . And also, the velocity for any given 1 is a 

parabolic.            
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5 Conclusion 
 
In this research, we studied the effects of magnetic field and heat transfer on an oscillatory flow of Jeffrey 
fluid through a porous and indented artery. The expressions for velocity and temperature profiles are 
obtained analytically and plots were obtained using Mathematica program. The results are analyzed for 

different values of the important parameters namely Re , Reynolds number, 1 , Jeffrey parameter, 

oscillatory frequency , Darcy number Da , Magnetic parameter M , Prandtl number for blood Pr , and 
radius of stenosis a .  
 
Thus, blood velocity can be controlled by suitably adjusting (increasing/decreasing) the magnetic field 
strength/the slip coefficient and other physical parameters. The results presented should be of sufficient 
interest to surgeons who usually want to keep the blood flow rate at a desired level during the entire surgical 
procedure. 
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