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Abstract

In the shortest path problem most approaches has been proposed over the last twenty years

are focused to deterministic approaches. Stochastic approaches that include theory of truncated

asymmetric probability distributions have not been tackled in the literature of optimal paths.

Since, in practice, the paths are distances that must be traveled in finite times which are not

always fixed, the stochasticity of the time has to be considered into the problem. In this paper,

we consider using the moments of the truncated skew-t distribution to the problem of finding

the shortest path between two locations with minimum distance by the transition times. The

skew-tand truncated skew-t distributions are described explicitly to show the moments and their

existence by the convergence of the hypergeometric series. An application to optimal paths using

the moments of the truncated skew-t distribution and the graph theory illustrates the shortest

path by the minimum average transition time.
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1 Introduction

In the literature, truncated moments have been derived for several truncated distributions, particularly
for the doubly truncated distributions, for instance in [1] is considered the truncated moments of
a doubly truncated binomial distribution. Truncated moments of a doubly truncated normal were
derived in [2]. Sugiura and Gomi [3] studied the skewness and kurtosis of a doubly truncated
normal and a right truncated Weibull distribution. Recently, in [4] was derived several expressions
for truncated moments useful for numerical computation. These include truncated moments of
normal, lognormal, Pearson type III, log Pearson type III, and extreme value (Weibull and Gumbel)
distributions.

In the last decade the interest has focused on finding more flexible ways to represent the data,
avoiding unrealistic assumptions [5]. A flexible class of location-scale models are defined by the
skew-elliptical family of distributions; see [6], [7, 8], [9], [10], [11]. This class allows modeling
skewness in the distribution of the data, however the models must be based on reals characteristics
of the data, for instance proposing skew models. In [12] provides an overview of the literature
concerned with the family of skew-normal distributions and other continuous random variables
families linked to class skew-normal. The goodness-of-fit tests for the skew-normal distribution
were proposed in [13], [14], where a characterization of the skew-normal as well as relevant results
on quadratic and linear forms are given; properties of the skew-normal, skew-uniform, skew-t, skew-
Cauchy, skew-Laplace, and the skew-logistic distributions were explored in [15]. Later, in [16], and
[17], were studied some asymmetric and symmetric multivariate distributions. On a specific problem
of climatic data, in [18] was shown the need to study the truncation of the skew-normal, and also
the need to study the simultaneity of the asymmetry and truncation, indicating the existence of
natural physical limits, that is, the philosophy of modeling started to change.

In this paper is proposed to use the moments of the truncated skew-t distribution which are applied
to the common problem of optimal paths. Most calculations of the moments are based in [19] and the
generalizations in [20], specifying the conditions of convergence of the hypergeometric series. Finally
based on [6], [8], [16], [21], is presented the probability density function and cumulative distribution
function of skew-t distribution, and the moments and the truncated density are characterized. The
main objective of this paper is twofold: to study the convergence of the hypergeometric series
to guarantee the existence of the moments of a truncated skew-t distribution; and to applied the
moments of such distribution to the path problem in order to define finite traveling times to find
the shortest path between two locations using the graph theory.

The outline of this paper is as follows. In Section 2, formally describe the skew-t distribution.
Section 3, introduces the truncated skew-t distribution and the conditions to define the moments of
the distribution. Section 4, presents the study of convergence of the hypergeometric series to ensure
the existence of the moments of the distribution. An application to optimal path is considered in
Section 5. Finally in Section 6 some concluding remarks are discussed.

2 The Skew-t Distribution

Lemma 2.1. If f0 is a one-dimensional probability density function symmetric about 0, and G is a
one–dimensional distribution function such that G‘ exists and is a density symmetric about 0, then
for −∞ < z <∞, f(z) = 2f0(z)G(w(z)) is a density function for any odd function w(.) ([12]).

Proof. If Y ∼ f0 and X ∼ G‘ are independent random variables, then

1

2
= P (X − w(Y ) ≤ 0) = EY (X − w(Y ) ≤ 0 | Y ) =

∫
G {w(z)} f0(z)dz,

on noticing that w(Y ) and X − w(Y ) also have symmetric distribution about 0 ([12]).
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Using lemma 2.1, where f0 = t1 (x, v) and G = T1

(
αx
(
v+1
v+x2

) 1
2

; v + 1

)
, the density function of a

skew-t can be represented by:

fX(x;α, v) = 2t1(x; v)T1

(
αx

(
v + 1

v + x2

) 1
2

; v + 1

)
. (2.1)

So X stands for a skew-t (ST) distribution with mean 0, skewness parameter α, degrees of freedom
ν and density denoted by ST (α, ν). Now, if Y = ξ + $X, where ξ ∈ IR, $ ∈ IR+, we obtain
Y ∼ ST

(
ξ,$2, α, ν

)
, and the probability density function (pdf) of Y, given by

fY (y, ξ,$2, α, v) = 2t1(y, ξ,$2, v)T1

(
αz

(
v + 1

v + z2

) 1
2

; v + 1

)
, (2.2)

with z = (y − ξ)/$.

Let w(z, v) = z
(
v+1
v+z2

) 1
2
, we have that the pdf [22] is

fY (y, ξ,$2, α, v) = 2t1(y, ξ,$2, v)T1 (αw(z, v); v + 1) , (2.3)

explicitly,

fX(x;α, v) =
Γ( v+1

2
)

Γ( v
2
)
√
vπ

(
1 +

x2

v

)−( v+1
2

)

∫ xα

√
v+1

v+x2

−∞

Γ( v+2
2

)

Γ( v+1
2

)
√

(v + 1)π

(
1 +

x2

v + 1

)−( v+2
2

)

dx

=
(v + 1)( v+1

2
)v( v+2

2
)

2π

(
v + x2)−( v+1

2
)

∫ xα

√
v+1

v+x2

−∞

[
(v + 1) + x2]−( v+2

2
)
dx,

with v = 2, ... and −∞ < x <∞.

Let ∫ xα

√
v+1

v+x2

−∞

[
(v + 1) + x2]−( v+2

2
)
dx = 1−W

(
xα

√
v + 1

v + x2
; v + 1;α

)
,

thus,

fX(x;α, v) =
(v + 1)( v+1

2
)v( v+2

2
)

2π

(
v + x2)−( v+1

2
)

[
1−W

(
xα

√
v + 1

v + x2
; v + 1;α

)]
, (2.4)

with v = 2, ... and −∞ < x <∞, where

W

(
xα

√
v + 1

v + x2
; v + 1;α

)
=

(
xα

√
v + 1

v + x2

)−v
B(1, v)

3F2

v + 1

2
;
v

2
;
v + 1

2
;
v + 1

2
;
v + 2

2
;

−v + 1(
xα
√

v+1
v+x2

)2

 ,
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with 3F2 being the generalized hypergeometric series [23]. Thus the skew-t distribution is defined
by

fX(x;α, v) = (v+1)
( v+1

2
)
v
( v+2

2
)

2π

(
v + x2

)−( v+1
2

)
[
1−W

(
xα
√

v+1
v+x2

; v + 1;α
)]
, (2.5)

with v = 2, ... and −∞ < x <∞.

Fig. 1 shows the density of the skew-t distribution for increasing values of the skewness parameter α
and a fixed degrees of freedom ν. The t distribution (α = 0) is shown as a green line for comparison.

Fig. 1. Density curves of the skew-t distribution for several α values. Source: own
research.

3 The Truncated Skew-t Distribution

Let X be a random variable with probability density function (pdf) f(x) and the cumulative
distribution function (cdf) F (x), which both functions have infinity support. We have interest
in compute the pdf of X in a restricted support y = (a, b], that is, we want to compute X given
a < X ≤ b. This pdf is given by

f(x|a < X ≤ b) =
g(x)

F (a)− F (b)
= Tr(x), (3.1)

where g (x) = f (x) for all a < X ≤ b and g (x) = 0 elsewhere. It should be noted that Tr(x) has

the same support of g (x), and surely f (x|a < X ≤ b) is a distribution,
∫ b
a
f (x|a < X ≤ b) dx =

1
F (b)−F (a)

∫ b
a
g (x) dx = 1.

In our particular case, we consider the case that the random variable X is distributed as ST (α, ν),

with pdf t1 (x, v) and cdf T1

(
αx
(
v+1
v+x2

) 1
2

; v + 1

)
, which both functions have infinity support.

Now to compute the truncated skew-t distribution, we need the Equation (3.1), where g (x) =
t1 (x, v) for all a < X ≤ b and g (x) = 0 elsewhere, and Tr(x) has the same support g (x) .
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Therefore,

f(x|a < X ≤ b) =
g(x)

F (a)− F (b)

=
(v + 1)( v+1

2
)v( v+2

2
)

2π(B −A)
(v + x2)−( v+1

2
)

[1−W (r; v + 1;α)] I(a,b](x), (3.2)

where r = xα
√

v+1
v+x2

, B =
∫ b
−∞

(v+1)
( v+1

2
)
v
( v+2

2
)

2π
(v + x2)−( v+1

2
) [1−W (r; v + 1;α)] dx and A =∫ a

−∞
(v+1)

( v+1
2

)
v
( v+2

2
)

2π
(v + x2)−( v+1

2
) [1−W (r; v + 1;α)] dx, are constants.

Thus the truncated skew-t distribution (tST ) density is given by

f(x;α, v) =
(v + 1)( v+1

2
)v( v+2

2
)

2π(B −A)
(v + x2)−( v+1

2
) [1−W (r; v + 1;α)] I(a,b](x)

=

k
(
v + x2

)−( v+1
2 )

r∫
−∞

(
v + 1 + t2

)−( v+2
2 ) dt

B −A I(a,b](x), (3.3)

where k =
Γ( v+2

2 )(v+1)(
v+2
2 )

Γ( v2 )
√

(2v+1)π
.

Theorem 3.1. Let X ∼ ST (α, ν), the probability density function of a truncated skew-t distribution

exists if v <
−[x2(α2−1)+1]+

√
[x2(α2−1)+1]2+4x2(α2+1)

2
.

Proof. The proof is straightforward based on the D’Alembert criterion for convergence, under the

hypergeometric series 3F2

(
v+1

2
; v

2
; v+1

2
; v+1

2
; v+2

2
; −v+1

r2

)
, where r = xα

√
v+1
v+x2

.

A graphical representation of Theorem 3.1 is shown in Fig. 2, where the x axis represents the
parameter of truncation and the y axis represents the skewness parameter. We can see from this
figure that for small values of the truncation and skewness parameters the degrees of freedom is
very limited, but for large values of the truncation parameter and small values of the skewness
parameter the degrees of freedom is almost unrestricted.

3.1 The Moments

In this subsection we present the calculations of the moments of a truncated skew-t random variable
denoted by tST (α; v) and exposed this calculus through theorems and corollaries.

Theorem 3.2. If X ∼ tST (α; v), then the expectation value of X, is given by

E(X) =
(v + 1)( v+1

2
)v( v+2

2 )

2π(B −A)

Cb − Ca −
[
(v + 1)(1 + α2)

]−( v+2
2

)

1− v
1

2
(Da −Db)

 , (3.4)
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Fig. 2. Graphical representation of Theorem 3.1. Source: own research.

where

Ca =
(v + a2)

( v+2
2 )

1− v

[
1−W

(
aα

√
v + 1

v + a2
; v + 1;α

)]
,

Cb =
(v + b2)

( v+2
2 )

1− v

[
1−W

(
bα

√
v + 1

v + b2
; v + 1;α

)]
,

Da =

(
a2 +

v

1 + α2

)−( v+2
2

)

(v + a2)2B

(
v − 2

2
;

1

2

)

2F1

(
v + 2

2
;

1

2
;
v + 1

2
;

v
1+α2 − v
a2 + v

1+α2

)
,

Db =

(
b2 +

v

1 + α2

)−( v+2
2

)

(v + b2)2B

(
v − 2

2
;

1

2

)

2F1

(
v + 2

2
;

1

2
;
v + 1

2
;

v
1+α2 − v
b2 + v

1+α2

)
.

Proof. The proof is based on generalized hypergeometric series [23].

Remark 3.3. In the next section we will study the convergence of the hypergeometric series in this
particular case.

Theorem 3.4. If X ∼ tST (α; v), then the second moment of X, is

E(X2) =
(v + 1)( v+1

2
)v

( v+2
2 )

2π(B −A)
(AbBb −AaBa − (C1 − C2)) , (3.5)

6
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where

Ai = i
(v + i)

−v+1
2

1− v − 1

(1− v)vm

m−1∑
k=0

(−1)k

2k + 1

(
m− 1
k

)(
i√

v + i2

)2k+1

,

Bi = 1−W

(
iα

√
v + 1

v + i2
; v + 1;α

)
,

C1 =
(v + 1)−( v+2

2
)(1 + α2)−( v+2

2
)

2(1− v)
(−3+v

2

) (c∗∗1 − c∗1), with

c∗∗1 = (a2 + p)
−v+3

2 2F1

(
−3

2
,
−3 + v

2
;
−3 + v + 2

2
;
−(1 + α2)

(a2 + p)vα2

)
,

c∗1 = (b2 + p)
−v+3

2 2F1

(
−3

2
,
−3 + v

2
;
−3 + v + 2

2
;
−(1 + α2)

(b2 + p)vα2

)
,

C2 =
(v + 1)−( v+2

2
)(1 + α2)−( v+2

2
)

2(1− v)vm

m−1∑
k=0

(−1)k

2k + 1

(
m− 1
k

)
(a2 + p)−

v+2
2 (v + a2)

3+v
2 B

(
−1

2
, k + 1

)

2F1

(
v + 2

2
, k + 1;

v − 2k

2
;

(p− v)

(a2 + p)

)
− (b2 + p)−

v+2
2 (v + b2)

3+v
2 B

(
−1

2
, k + 1

)
2F1

(
v + 2

2
, k + 1;

v − 2k

2
;

(p− v)

(b2 + p)

)
, with m =

v

2
− 1 and p =

1

1 + α2
.

Proof. The proof is based on generalized hypergeometric series [23].

Theorem 3.5. If X ∼ tST (α; v), then the variance of X, is given by

V ar(X) =

(
(v + 1)( v+1

2
)v( v+2

2
)

2π(B −A)

)2

 [AbBb −AaBa − (C1 − C2)]

(v+1)
( v+1

2
)
v
( v+2

2
)

2π(B−A)

−

(Cb − Ca)−
[
(v + 1)(1 + α2)

]−( v+2
2

)

(1− v)

1

2
(Da −Db)

2 . (3.6)

Proof. V ar(X) = E(X2)− E2(X).

Theorem 3.6. If X ∼ tST (α; v), then the n-th moment odd of X, is given by

E(Xn) =
(v + 1)(

v+1
2 )v( v+2

2 )

2π(B −A)
[(Db −Da)−W ] , (3.7)

where

Da =

[
1−W

(
aα

√
v + 1

v + a2
; v + 1;α

)](
n− 1

2

)
!an−1

×

n−1
2∑
i=0

(−1)i
[
−
(
v+1

2

)]
!a

−i
2
(
v + a2

)−v+1+2i
2(

n−1−2i
2

)
!
(−v+1+2i

2

)
!

,

7
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Db =

[
1−W

(
bα

√
v + 1

v + b2
; v + 1;α

)](
n− 1

2

)
!bn−1

×

n−1
2∑
i=0

(−1)i
[
−
(
v+1

2

)]
!b

−i
2
(
v + b2

)−v+1+2i
2(

n−1−2i
2

)
!
(−v+1+2i

2

)
!

,

W =

(
α2 + 1

)−( v+2
2 )

(v + 1)(
v+2
2 )

(
n− 1

2

)
!

[
−
(
v + 1

2

)]
!

n−1
2∑
i=0

(
(−1)i(

n−1−2i
2

)
!
(−v+1+2i

2

)
!
Hi

) ,
where Hi is a function of 2F1

(
−
(

3+2i
2

)
; 2n−i+4

4
;− 10+3i+2n

4
;−

v

(α2+1)
−v

vc2

)
, with truncation parameter

c.

Proof. The proof is based on generalized hypergeometric series [23].

Theorem 3.7. If X ∼ tST (α; v), then the n-th moment even of X, n 6= 2, is given by

E(Xn) = (v+1)(
v+1
2 )v(

v+2
2 )

2π(B−A)
[(Db −Da)−W ] , (3.8)

where

Da =

1

[−(v+1)]
n−2
2

(
n−2

2

)
!Γ
(

1
2

)∑n
2
−1

i=1
(−1)i(v2+v+1)

n
2

−1−i

(n2−1−i)!Γ( 1
2

+i+1)

(√
a2 + v

)1+2i

[
1−W

(
aα
√

v+1
v+a2

; v + 1;α
)]−1 ,

Db =

1

[−(v+1)]
n−2
2

(
n−2

2

)
!Γ
(

1
2

)∑n
2
−1

i=1
(−1)i(v2+v+1)

n
2

−1−i

(n2−1−i)!Γ( 1
2

+i+1)

(√
b2 + v

)1+2i

[
1−W

(
bα
√

v+1
v+b2

; v + 1;α
)]−1 ,

W =
(v + 1)−( v+2

2
)(α2 + 1)−( v+2

2
)

[−(v + 1)]
n
2
−1

(n
2
− 1
)

!Γ(
1

2
)

n
2
−1∑
i=0

(−1)i(v2 + v + 1)
n
2
−1−i(

n
2
− 1− i

)
!Γ
(

1
2

+ i+ 1
)Hi,

where Hi is a function of 2F1

(
−
(

3+2i
2

)
; 2n−i+4

4
;− 10+3i+2n

4
;−

v

(α2+1)
−v

vc2

)
, with truncation parameter

c.

Proof. The proof is based on generalized hypergeometric series [23].

4 Convergence Study

In this section we study the convergence of the hypergeometric series on the moments of a truncated
skew-t distribution. The first two moments depend on hypergeometric series, because if this
series does not converge, the moments do not exist, so we will study the conditions for which
the hypergeometric series converges, in particular, for the parameters that characterize the density
and the moments of a truncated skew-t distribution.

In [24] is provided some particular conditions of divergence, when the parameters of hypergeometric
series are negative or zero, but in our case the parameters are positive and non-zero, so we use the
D’Alembert criterion for convergence. Usually a hypergeometric series is defined as in [20]

pFq (a1, a2, . . . , ap; b1, b2, . . . , bq; z) =

∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
, (4.1)

8
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where (a)n = a (a+ 1) (a+ 2) . . . (a+ n− 1) = (a1+n−1)!
(a1−1)!

.

In our case, we study the series 2F1 (a1, a2; b1; z) , where can be expressed by

2F1 (a1, a2; b1; z) =

∞∑
n=0

(a1+n−1)!
(a1−1)!

(a2+n−1)!
(a2−1)!

(b1+n−1)!
(b1−1)!

zn

n!
=

∞∑
n=0

Γ(a1+n)
Γ(a1)

Γ(a2+n)
Γ(a2)

Γ(b1+n)
Γ(b1)

zn

n!

=

∞∑
n=0

Γ (b1) Γ (n) Γ (a1 + n) Γ (a2 + n) Γ (n)

Γ (b1 + n) Γ (n) Γ (a1) Γ (a2) Γ (n)

zn

n!

=

∞∑
n=0

B (a1, n)B (a2, n)

B (b1, n)

zn

n
, (4.2)

where B (·, ·) is the Beta function.

Now we present the study of convergence for our particular case, in which the first two moments
depend on the functions

2F1

(
v + 2

2
,

1

2
;
v + 1

2
;

−α2v

b2 + α2b2 + v

)
,

2F1

(
v + 2

2
, k + 1;

v − 2k

2
;

1
α2+1

− v
b2 + 1

α2+1

)
,

2F1

(
−
(

3 + 2i

2

)
;

2n− i+ 4

4
;−10 + 3i+ 2n

4
;−

v

(α2+1)
− v

vc2

)
,

and

2F1

(
−3

2
,
−3 + v

2
;
−3 + v + 2

2
;
−(1 + α2)

(a2 + p)vα2

)
.

Let 2F1

(
v+2

2
, 1

2
; v+1

2
; −α2v
b2+α2b2+v

)
=
∑∞
n=0

B( v+1
2
,n)

B( v+2
2
,n)B( 1

2
,n)

(
−α2v

b2+α2b2+v

)n
n

, where the general term of

the series has the form

an =
B
(
v+1

2
, n
)

B
(
v+2

2
, n
)
B
(

1
2
, n
)
(

−α2v
b2+α2b2+v

)n
n

, (4.3)

thus based on D’Alembert criterion and the Equation (4.3), we have that

{
an+1

an

}
=


Γ( v+2

2
+n+1)Γ( 1

2
+n+1)

Γ( v+1
2

+n+1)
zn+1

(n+1)!

Γ( v+2
2

+n)Γ( 1
2

+n)
Γ( v+1

2
+n)

zn

n!

 =

{(
v+2

2
+ n

) (
1
2

+ n
)(

v+1
2

+ n
) z

(n+ 1)

}

=

{
n2
(
v+2
2n

+ 1
) (

1
2n

+ 1
)

n2
(
v+1
2n

+ 1
) z(

1 + 1
n

)}

=

{(
v+2
2n

+ 1
) (

1
2n

+ 1
)(

v+1
2n

+ 1
) z(

1 + 1
n

)} = z. (4.4)

This means that the convergence of hypergeometric series in this situation depends on z and in

cases that the module is less than 1, so 2F1

(
v+2

2
, 1

2
; v+1

2
; −α2v
b2+α2b2+v

)
converges if

∣∣∣ −α2v
b2+α2b2+v

∣∣∣ < 1.

Equivalently,

2F1

(
v + 2

2
, k + 1;

v − 2k

2
;

1
α2+1

− v
b2 + 1

α2+1

)
=
∞∑
n=0

B
(
v−2k

2
, n
)

B
(
v+2

2
, n
)
B (k + 1, n)

(
1−α2v−v
α2b2+b2+1

)n
n

,

9
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using the D’Alembert criterion

{
an+1

an

}
=


Γ( v+2

2
+n+1)Γ(k+1+n+1)

Γ( v−2k
2

+n+1)
zn+1

(n+1)!

Γ( v+2
2

+n)Γ(k+1+n)

Γ( v−2k
2

+n)
zn

n!


=


( v+2

2
+n)Γ( v+2

2
+n)(k+1+n)Γ(k+1+n)

( v−2k
2

+n)Γ( v−2k
2

+n)
zn+1

(n+1)!

Γ( v+2
2

+n)Γ(k+1+n)

Γ( v−2k
2

+n)
zn

n!


=

{(
v+2

2
+ n

)
(k + 1 + n)(

v−2k
2

+ n
) z

(n+ 1)

}
= z. (4.5)

Therefore,

2F1

(
v + 2

2
, k + 1;

v − 2k

2
;

1
α2+1

− v
b2 + 1

α2+1

)
converges if

∣∣∣∣ 1− α2v − v
α2b2 + b2 + 1

∣∣∣∣ < 1,

2F1

(
−3

2
,
−3 + v

2
;
−3 + v + 2

2
;
−(1 + α2)

(a2 + p)vα2

)
converges if

∣∣∣∣∣ −(1 + α2)

(a2 + 1
1+α2 )vα2

∣∣∣∣∣ < 1,

and equivalently,

2F1

(
−
(

3 + 2i

2

)
;

2n− i+ 4

4
;−10 + 3i+ 2n

4
;−

v

(α2+1)
− v

vc2

)
converges if

∣∣∣∣∣−
v

(α2+1)
− v

vc2

∣∣∣∣∣ < 1.

If the conditions developed above are satisfied then the first two moments of truncated skew-t exist.

Now if

∣∣∣∣∣−
v

(α2+1)
−v

vc2

∣∣∣∣∣ < 1, then 2F1

(
−
(

3+2i
2

)
; 2n−i+4

4
;− 10+3i+2n

4
;−

v

(α2+1)
−v

vc2

)
converges the n-th

moment exists. The proof is based on the D’Alembert criterion for convergence.

So far, we have explained with details the moments of the truncated skew-t distribution and the
convergence of hypergeometric series to ensure the existence of such moments, in order to use the
results of this distribution with compact support to specify finite traveling times that are considered
in the shortest path problem as an application in the next section 5.

5 Application

Considerer the map Fig. 3. We use graphs to model the paths and vertices of different way,
which allows visualization and identification of the edges. We wish to determine the shortest
path to go from A to B, in the following situations: Let Ci, Di and Ei, i = 1, ..., 5, be the
transition times in minutes of their paths, which we assume truncated skew-t distribution for
each one of them, that is, Ci ∼ SKTT (aCi , bCi , αCi , vCi) , Di ∼ SKTT (aDi , bDi , αDi , vDi) and
Ei ∼ SKTT (aEi , bEi , αEi , vEi), where aj and bj are the truncation parameters.

Graph theory allows a wide quantity results for the determination of the optimal paths shorter,
such as the establishment of the centroid of the graph, but most results are thought processes
deterministic, such as geodesic distance. In this situation would be a map with three paths
that quantify the same distance between A and B, but the randomization of the weights allows
a redefinition of the geodesic distance using weights of the edges.

10
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Table 1 shows the different parameter values for the truncated skew-t distributions of the transition
times Ci, Di and Ei, and Table 2 illustrates the respective right expectation values.

Fig. 3. Viewing the paths and the vertices.

Table 1. Parameter values for the transition times Ci, Di and Ei

i aCi bCi αCi vCi aDi bDi αDi vDi aEi bEi αEi vEi
1 5 ∞ 2 10 12 ∞ 2 13 4 ∞ 2 11
2 6 ∞ 4 10 15 ∞ 4 13 7 ∞ 4 11
3 7 ∞ 5 10 16 ∞ 5 13 6 ∞ 5 11
4 6 ∞ 7 10 9 ∞ 7 13 9 ∞ 7 11
5 5 ∞ 3 10 18 ∞ 3 13 7 ∞ 3 11

Table 2. Right expectation values for the transition times

i 1 2 3 4 5

E(Ci) 33.5 47.25 63.51 22.21 33.5
E(Di) 17.26 33.83 30.31 9.79 39.35
E(Ei) 21.73 62.11 46.22 101.25 62.11

Thus the expected values for the transition times of their paths are:

E(Ci) = 33.5 + 47.25 + 63.51 + 22.21 + 33.5 = 199.97

E(Di) = 17.26 + 33.83 + 30.31 + 9.79 + 39.35 = 130.54

E(Ei) = 21.73 + 62.11 + 46.22 + 101.25 + 62.11 = 293.42

We can observe that D has the least distance between A and B since it has the lowest expected
demand, with an average time 130.54 minutes. On the other hand, C requires a average time
of 199.97 minutes and E presents the highest average time. Therefore, just is necessary find the
equilibrium between time and distance. From graph theory, these results are an approximation to
a definition of the shortest path algorithm where the weights of the edges are truncated skew-t
random variables.

6 Conclusions

Sometimes, observed data sets are almost exclusively truncated, because of analytical detection
limits or spatial and temporal limitations on data collection. Some related proposals and results
have appeared in the literature under the concept of the truncated distribution. The present paper
considered the moments of a truncated skew-t distribution, giving descriptive information about
the distribution. As given in Section 4, in addition to their utility as general descriptive measures,
the moments can be employed for solving statistical problems. When we study the functional
relationship between the expectation of a truncated skew-t random variable and different values of
the asymmetry parameter, α, keeping fixed the degrees of freedom, v, on three levels, changes in
the expectation when α→∞, are null. Future research is intended to build applications in optimal
paths from a random viewpoint.
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Comments

begindefinition The (differential) entropy of a random vector Z ∈ IRk with probability density
function fZ (z) is defined in [10]

HZ = −E [log {fZ (Z)}] = −
∫
IRk

log {fZ (z)} fZ (z) dz. (6.1)

We know that fα,v (x|a < X ≤ b) =


1

[Fα,v(x)]b
a

fα,v (x) , if a < x ≤ b

0, otherwise ,

where

fα,v (x) =
(v + 1)( v+1

2
)v( v+2

2
)

2π
(v + x2)−( v+1

2
)

(
1−W

(
xα

√
v + 1

v + x2
; v + 1;α

))
I(a,b](x)

and

[Fα,v (x)]ba = B −A,

where

B =

∫ b

−∞

(v + 1)( v+1
2

)v( v+2
2

)

2π
(v + x2)−( v+1

2
)

(
1−W

(
xα

√
v + 1

v + x2
; v + 1;α

))
dx,

and

A =

∫ a

−∞

(v + 1)( v+1
2

)v( v+2
2

)

2π
(v + x2)−( v+1

2
)

(
1−W

(
xα

√
v + 1

v + x2
; v + 1;α

))
dx.

Observation: When a→ −∞ and b→ +∞ we have

fX(x;α, v) = 2t1(x; v)T1

(
αx

(
v + 1

v + x2

) 1
2

; v + 1

)
.

So X stands for a skew-t (ST) distribution with mean 0, skewness parameter α , degrees of freedom
ν and density denoted by ST (α, ν). Now, if Y = ξ + $X, where ξ ∈ IR, $ ∈ IR+, we obtain
Y ∼ ST

(
ξ,$2, α, ν

)
, and the pdf of Y, given by

fY (y, ξ,$2, α, v) = 2t1(y, ξ,$2, v)T1

(
αz

(
v + 1

v + z2

) 1
2

; v + 1

)
, (6.2)

where z = y−ξ
$

. Let w(z, v) = z
(
v+1
v+z2

) 1
2
, we have that the pdf in Equation (6.3) is

fY (y, ξ,$2, α, v) = 2t1(y, ξ,$2, v)T1 (αw(z, v); v + 1) .
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The multivariate case (k dimensional), for this model is presented in [10]. We have Z0 ∼ STk (0, Ik, η, v),
with pdf

pz0 (z0) = 2tk (z0; v)T

(√
v + k

v + ‖z0‖2
η
T
z0; v + k

)
.

The entropy for the one-dimensional case is given in [22]. Now in our situation, entropy results
from solving

H (X) = E (− log fX(x;α, v)) (6.3)

= E

(
− log

{
(v + 1)( v+1

2
)v( v+2

2
)

2π(B −A)
(v + x2)−( v+1

2
)

[
1−W

(
xα

√
v + 1

v + x2
; v + 1;α

)]
I(a,b](x)

})

= E

(
− log

(
(v + 1)( v+1

2
)v( v+2

2
)

2π

)
+ (

v + 1

2
) log(v + x2)

− log

[
1−W

(
xα

√
v + 1

v + x2
; v + 1;α

)]
+ log (B −A)

)

= − log

(
(v + 1)( v+1

2
)v( v+2

2
)

2π

)
+ (

v + 1

2
)E
(
log(v + x2)

)

−E

(
log

[
1−W

(
xα

√
v + 1

v + x2
; v + 1;α

)])
+ log (B −A) , (6.4)

where we need to determine

E

(
log

[
1−W

(
xα

√
v + 1

v + x2
; v + 1;α

)])
,

with W =
(
xα
√

v+1
v+x2

)−v
B(1, v) 3F2

 v+1
2

; v
2
; v+1

2
; v+1

2
; v+2

2
; −v+1(

xα

√
v+1

v+x2

)2

.

A hypergeometric series is defined in [20] as

pFq (a1, a2, ..., ap; b1, b2, ..., bq; z) =

∞∑
n=0

(a1)n ... (ap)n
(b1)n ... (bq)n

zn

n!
, (6.5)

where (a)n = a (a+ 1) (a+ 2) ... (a+ n− 1) = (a1+n−1)!
(a1−1)!

.
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Thus,

3F2

v + 1

2
;
v

2
;
v + 1

2
;
v + 1

2
;
v + 2

2
;

−v + 1(
xα
√

v+1
v+x2

)2

 =3 F2

(
v + 1

2
;
v

2
;
v + 1

2
;
v + 1

2
;
v + 2

2
; z

)

=

∞∑
n=0

(
v+1
2

)
n

(
v
2

)
n

(
v+1
2

)
n(

v+1
2

)
n
...
(
v+2
2

)
n

zn

n!
=

∞∑
n=0

(
v
2

)
n

(
v+1
2

)
n(

v+2
2

)
n

zn

n!
=

∞∑
n=0

( v2+n−1)!
( v2−1)!

( v+1
2 +n−1)!

( v+1
2 −1)!

( v+2
2 +n−1)!

( v+2
2 −1)!

zn

n!

=

∞∑
n=0

(
v
2

)
!
(
v
2 + n− 1

)
!
(
v+1
2 + n− 1

)
!(

v
2 + n

)
!
(
v
2 − 1

)
!
(
v+1
2 − 1

)
!

zn

n!
=

∞∑
n=0

Γ
(
v
2 + 1

)
Γ
(
v
2 + n

)
Γ
(
v+1
2 + n

)
Γ
(
v
2 + n+ 1

)
Γ
(
v
2

)
Γ
(
v+1
2

)
nΓ (n)

zn

=

∞∑
n=0

Γ (n) Γ (n)

B
(
v
2 + 1;n

)
B
(
v
2 ;n
)
B
(
v+1
2 ;n

)
n
zn, (6.6)

where Γ (·) is the Gamma function and B (·) is the Beta function.

Now, E
(

log
(

1−W
(
xα
√

v+1
v+x2

; v + 1;α
)))

= E

log

1 −

(xα√ v + 1

v + x2

)−v
B(1, v)


3F2

v + 1

2
;
v

2
;
v + 1

2
;
v + 1

2
;
v + 2

2
;

−v + 1(
xα
√

v+1
v+x2

)2




= E

log

1 −

(
xα

√
v + 1

v + x2

)−v
B(1, v)

∞∑
n=0

Γ (n) Γ (n)

B
(
v
2 + 1;n

)
B
(
v
2 ;n
)
B
(
v+1
2 ;n

)
n
zn


= E

(
log

[
1 −

(
1

xα

)v (
v + x2

v + 1

) v
2

∞∑
n=0

B(1, v)Γ (n) Γ (n)

B
(
v
2 + 1;n

)
B
(
v
2 ;n
)
B
(
v+1
2 ;n

)
n

((
v + x2

)
(1 − v)

x2α2 (v + 1)

)n])

= E

(
log

[
1 −

∞∑
n=0

B(1, v)Γ (n) Γ (n)

B
(
v
2 + 1;n

)
B
(
v
2 ;n
)
B
(
v+1
2 ;n

)
n

(
v + x2

) v
2+n

(1 − v)
n

x2n+vα2n+v (v + 1)
v
2+n

])
, (6.7)

which is still an open problem.
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2015. We thank to Larissa Ávila Matos for her fruitful insights.

14
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